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a b s t r a c t

This paper revisits the problem of estimating the domain of attraction and the nonlinear L2 gain for
systems with saturation nonlinearities. We construct a virtual input space from the algebraic loop
contained in systems, and divide this virtual input space into several regions. In one of these regions,
none of the virtual inputs saturate. In each of the remaining regions, there is a unique virtual input that
saturates everywhere with the time-derivative of its saturated signal being zero. These special properties
of the virtual inputs in different regions of the virtual input space are combinedwith an existing piecewise
quadratic Lyapunov function that contains the information of virtual input saturation to arrive at a set of
less conservative stability and performance conditions, fromwhich we can obtain a larger level set of the
piecewise quadratic Lyapunov function as an estimate of the domain of attraction and a tighter scalar
function of the bound on the L2 norm of the exogenous input as an estimate of the local nonlinear L2
gain. Simulation results indicate that the proposed approach has the ability to obtain a significantly larger
estimate of the domain of attraction and a significantly tighter estimate of the nonlinear L2 gain than the
existing methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, systems with saturation nonlinearities
have been extensively studied in the research community, due in
part to their ubiquity in engineering and in part to the theoretical
challenges they pose in control theory. Enormous amount of re-
search has been devoted to the analysis and synthesis of such sys-
tems. For example, the problemsof global controllability and global
stabilization have been studied in depth in Sussmann, Sontag, and
Yang (1994), and Teel (1992), and semi-global stabilization by lin-
ear feedback has been studied in Lin (1998), Lin and Saberi (1993)
and Saberi, Lin, and Teel (1996).
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The estimations of the domain of attraction (Alamo, Cepeda, &
Limon, 2005; Cao & Lin, 2003; Dai, Hu, Teel, & Zaccarian, 2009;
Gomes da Silva & Tarbouriech, 2005; Hu & Lin, 2001, 2003; Hu,
Teel, & Zaccarian, 2006; Li & Lin, 2013) and the nonlinear L2
gain (Crawshaw & Vinnicombe, 2000; Hu et al., 2006; Hu, Teel, &
Zaccarian, 2008; Wu & Soto, 2004; Zaccarian & Teel, 2004) play a
very important role in analysis of linear systems under saturated
feedback. This is especially so for systems that cannot be globally
or semi-globally stabilized. Level sets of Lyapunov functions and
scalar functions of the bound on the L2 norm of the exogenous
input that characterize the disturbance rejection are commonly
used as estimates of the domain of attraction and the local
nonlinear L2 gain, respectively, for such systems. Key to obtaining
such estimates of less conservatism is the treatment of the
saturation function and the construction of the Lyapunov function.
Much effort has beenmade in improving both of these two aspects.

In treating the saturation function, a popular way is to bound it
with a global or regional sectors (see, for example, Gomes da Silva
& Tarbouriech, 2005, Hu et al., 2006). To reduce the conservatism,
a convex hull representation of saturation functions was proposed
in Hu and Lin (2001), which results in a linear differential inclusion
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for saturated systems. Moreover, the authors of Alamo et al. (2005)
presented an improved treatment with more auxiliary matrices
than the representation in Hu and Lin (2001). A generalized sector
condition that is able to provide a tighter bound of the saturation
function than the linear sector was proposed in Hu, Huang, and
Lin (2004). Sector-like conditions that characterize the relationship
between saturation/deadzone functions and their time-derivative
functions were derived in Dai et al. (2009).

With their simplicity, the quadratic Lyapunov functions are
most commonly used Lyapunov functions in stability analysis of
nonlinear systems. Many attempts have been made to reduce the
conservatism associated with the quadratic Lyapunov functions.
For example, the polynomial Lyapunov functions were adopted for
polynomial systems (Chesi, 2004) and the maximum or minimum
of a group of quadratic Lyapunov functions was studied for the
time-delay systems (Xie, Shishkin, & Fu, 1997). Furthermore, a
multiple Lyapunov functionwithout requirements of its continuity
and monotonousness can be found in Ahmadi and Parrilo (2008)
and Branicky (1998).

For linear systems under a saturated linear feedback, some non-
quadratic Lyapunov functions have beenwell investigated for both
stability analysis and controller design. A composite quadratic Lya-
punov function is composed from a group of quadratic functions in
Hu and Lin (2003). A level set of this composite Lyapunov func-
tion is the convex hull of the corresponding level sets of the in-
dividual quadratic Lyapunov functions. A saturation-dependent
Lyapunov function was proposed in Cao and Lin (2003) that takes
into account the severity of the actuator saturation. An integral of
the saturation/deadzone function was added to a quadratic Lya-
punov function to form a Lure–Postnikov type Lyapunov function
(Gomes da Silva, Tarbouriech, & Reginatto, 2002; Kapila, Sparks, &
Pan, 2001). This Lure–Postnikov type Lyapunov function was gen-
eralized inDai et al. (2009) to a piecewise quadratic Lyapunov func-
tion of an augmented state vector that contains the system states
and the saturation/deadzone function. All these Lyapunov func-
tions are generalized from quadratic Lyapunov functions and lead
to substantial improvement in the estimations of the domain of at-
traction and the nonlinear L2 gain.

The introduction of the saturation/deadzone function in the
Lure–Postnikov type Lyapunov function (Gomes da Silva et al.,
2002; Kapila et al., 2001) and the piecewise quadratic Lyapunov
function (Dai et al., 2009) provides an extra degree of freedom
in the resulting stability and performance conditions. However,
the information inherent in the saturation/deadzone function has
not been fully exploited and entails further exploration. In this
paper, we will present the idea of partitioning the virtual input
space constructed from the algebraic loop of saturated systems. In
particular,wewill divide anm-dimensional virtual input space into
m + 1 regions. In one of these regions, none of the virtual inputs
saturate. In each of the remaining regions, exactly one virtual input
saturates everywhere with the time-derivative of its saturated
signal being zero, and none of the remaining virtual inputs stay
saturated everywhere in the region.

In Dai et al. (2009), the negative definiteness of a certain matrix
ensures global/regional stability of the system. In the regions of
the virtual input space where the time-derivative of the saturated
signal of the kth virtual input is zero, we only need to guarantee
the negative definiteness of thematrix in Dai et al. (2009), with the
row and column corresponding to the kth virtual input removed,
as the term in the derivative of the piecewise quadratic Lyapunov
function corresponding to the saturated signal of the kth virtual
input no longer exists. Thiswill reduce conservatism in the stability
and performance conditions and hence lead to a larger estimate of
the domain of attraction and a tighter estimate of the nonlinearL2
gain for saturated systems than the method proposed in Dai et al.
(2009).

The remainder of this paper is organized as follows. In Sec-
tion 2, we review some treatments of the saturation function
and introduce a partitioning of the virtual input space. In these
partitions the properties of saturation functions are explored. The
problem statement is also made in this section. In Section 3, based
on these properties and the piecewise quadratic Lyapunov func-
tion (Dai et al., 2009), we establish the stability and performance
conditions for the estimations of the domain of attraction and the
nonlinear L2 gain. The optimization problems are formulated to
maximize/minimize such estimates. Section 4 provides some sim-
ulation results to illustrate the effectiveness of the results in Sec-
tion 3. Section 5 concludes the paper.

Notation. For u ∈ L2, ∥u∥2 =


∞

0 uT(t)u(t)dt
 1

2 . For a square
matrix A, He(A) := A + AT. For two integers l1 and l2 ≥ l1, I[l1, l2]
denotes the set of integers {l1, l1 + 1, . . . , l2}. For an integerm, let
K be the set ofm×m diagonal matrices whose diagonal elements
are either 1 or 0. There are 2m elements in K . Suppose that these
elements of K are labeled as Ki, i ∈ I[1, 2m

]. Let K−

i = I − Ki.
Clearly, K−

i ∈ K . Let Im denote the identity matrix of dimensionm,
and 0n×m the n × m zero matrix.

2. Preliminaries and problem statement

2.1. Treatments of the saturation function

Consider a system with saturation described in the following
form:

ẋ = Ax + Bysat(y) + Bωω,

y = Cyx + Dyysat(y) + Dyωω,

z = Czx + Dzysat(y) + Dzωω,

(1)

where x ∈ Rn is the state, y ∈ Rm contains all the variables affected
by saturation/deadzone, ω ∈ Rr is the exogenous input such as
the reference and disturbances, z ∈ Rp is the performance out-
put, and sat : Rm

→ Rm denotes the saturation function, which
is defined as sat(y) = [sat(y1), sat(y2), . . . , sat(ym)]T, sat(yj) =

sgn(yj)min{1, |yj|}. Many linear systems with saturation compo-
nents, such as anti-windup systems, can be transformed into the
form of system (1). By the relationship dz(u) = u − sat(u), where
dz(·) denotes the deadzone function, system (1) can be equiva-
lently converted into a system with deadzones, which is consid-
ered in Dai et al. (2009) and Hu et al. (2006). When Dyy = 0,
system (1) reduces to a linear system with saturated linear feed-
back. When Dyy ≠ 0, system (1) contains the following algebraic
loop,

y = Cyx + Dyysat(y) + Dyωω. (2)

This algebraic loop is said to be well-posed if there exists a unique
solution y for each Cyx + Dyωω. A necessary and sufficient condi-
tion for the well-posedness is that the values of det(Im + (Im −

Dyy)
−1DyyKi), i ∈ I[1, 2m

], are all nonzero and have the same sign.
One can easily verify this condition by Claim 2 in Hu et al. (2006).
Throughout this paper, thewell-posedness of the algebraic loop (2)
is assumed to be satisfied.

Next, we review some treatments of the saturation functions as
found in Dai et al. (2009), Gomes da Silva and Tarbouriech (2005)
and Hu and Lin (2001), which will be used for the stability and
performance analysis for system (1) in the next section.

Lemma 1. Given v = [v1 v2 . . . vm]
T

∈ Rm such that |vj| ≤

1, ∀ j ∈ I[1,m], the following inequality holds for any diagonal
matrix S ∈ Rm×m satisfying S > 0,

(u − sat(u))T S (sat(u) − v) ≥ 0, ∀ u ∈ Rm.
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