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a b s t r a c t

A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear
autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class
of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and
generalization performance of the original forward LAR algorithm. This is achieved by introducing a
replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant
model terms selected by forward LAR with more significant ones, leading to an improved model in terms
of themodel compactness andperformance. A numerical example to construct four types ofNARXmodels,
namely polynomials, radial basis function (RBF) networks, neuro fuzzy andwavelet networks, is presented
to illustrate the effectiveness of the proposed technique in comparison with some popular methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A large class of nonlinear dynamic systems can be described by
a nonlinear autoregressive model with exogenous input (NARX)
(Chen, Billing, & Luo, 1989)

y(t) = f (y(t − 1), . . . , y(t − ny),

u(t − 1), . . . , u(t − nu)) + ξ(t)
= f (x(t)) + ξ(t) (1)

where the set {u(t), y(t)} represents the real system input and
output at time interval t, t = 1, 2, . . . ,N, N being the size of
the training data set. Their largest input and output lags are nu and
ny, respectively. ξ(t) denotes the error. The set {x(t), y(t)} is the
model input vector and output at time interval t . For simplicity, the
model input x(t) = [y(t−1), . . . , y(t−ny), u(t−1), . . . , u(t−nu)]
is rewritten as x(t) = [x1(t), . . . , xr(t)] with the dimension r =

ny + nu. f (·) is some unknown function.
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Constructing such a NARX model involves three steps (Ljung,
1999): (1) model input selection. More specifically, the unknown
lags ny and nu need to be determined. Statistical tests and regres-
sion methods are among the popular approaches (Haber & Unbe-
hauen, 1990; Lind & Ljung, 2005, 2008); (2) choice of mapping
function f (·). Polynomials (Billings&Chen, 1989), radial basis func-
tion (RBF) networks (Chen, Cowan, & Grant, 1991), neuro fuzzy
networks (Harris, Hong, & Gan, 2002; Wang & Mendel, 1992) and
wavelet networks (Billings & Wei, 2005; Zhang, 1997) are popu-
lar options. Though some suggestions are made on the function
selection (Sjöberg et al., 1995), no unified framework is available;
(3) parameter identification in function f (·). This requires the spe-
cific expression of the model (1). One popular NARX model struc-
ture is a linear combination of nonlinear functions whose param-
eters are given a priori, which is formulated as (Ljung, 1999)

y(t) =

M
i=1

pi(x(t), vi)θi + ξ(t) (2)

where pi is some nonlinear function with pre-fixed nonlinear pa-
rameters vector vi, and θi, i = 1, . . . ,M , are the linear coefficients
to be optimized. The model (2) is also called the linear-in-the-
parameters model for pre-fixed nonlinear parameters vi’s. How-
ever, the number of nonlinear functions M is often large, the fixed
values for these nonlinear parameters are not optimized, and some
nonlinear functions are redundant. This is often referred to as an
over-parametrization problem, and not all nonlinear functions are
necessarily included into the finalmodel but a good subset is desir-
able (De Nicolao & Trecate, 1999). Within this context, building a
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linear-in-the-parameters model becomes amodel reduction or se-
lection problem. This paper focuses on the model selection issue.

Themain objective ofmodel selection is to build a parsimonious
model with good generalization performance. Exhaustive search
to test all possible subsets is only suitable for a very small
number of candidate model terms (nonlinear functions) while it is
computationally too demanding when the number is large (Lind &
Ljung, 2008; Mao & Billings, 1997). This is known to be an NP-hard
problem. To reduce the computational effort, stepwise forward
selectionmethods (Miller, 2002), like forward orthogonal selection
(Chen et al., 1991), fast recursive algorithm (Li, Peng, & Irwin, 2005)
and orthogonal matching pursuit (Pati, Rezaiifar, & Krishnaprasad,
1993), start from an empty model and add one term at a time until
the model performance is satisfied. The alternative is the stepwise
backward selection that begins with the full model using all the
candidates, and then deletes one term at a time. All these methods
are fast, greedy therefore suboptimal (Kump, Bai, Chan, Eichinger,
& Li, 2012; Sherstinsky & Picard, 1996). Hence, a parsimonious
model with the smallest model size is always desirable.

To improve themodel compactness and the generalization per-
formance, the combination of forward selection and backward se-
lection has been proposed in Li, Peng, and Bai (2006) and Zhang,
Li, Bai, and Wang (2012), where the backward selection is used
to reselect and replace those insignificant terms produced by
the forward selection. Alternatively, a number of hybrid meth-
ods combining forward selection and backward elimination (in-
stead of backward replacement) have been reported (Haugland,
2007; Soussen, Idier, Brie, & Duan, 2011; Zhang, 2011), where the
backward elimination removes insignificant terms. The elimina-
tion scheme is also referred to asmodel pruning. For example, term
clustering (Aguirre & Billings, 1995) and simulation error (Farina
& Piroddi, 2010; Piroddi & Spinelli, 2003) based pruning methods
have been studied for constructing polynomial NARX models.

It is noted that the subset selection may fail in the following
scenarios:

• The candidate terms are highly correlated and redundant,
which may lead to the ill-conditioning problem (Moussaoui,
Brie, & Richard, 2005). The forward selection can avoid selecting
highly correlated terms but is not entirely immune to the ill-
conditioning problem. The backward selection easily suffers
from this problem as it has to deal with the inversion of all the
terms at the beginning.

• If the training data is severely polluted by noise, these subset
selection methods may fit the models into noise which leads
to the over-fitting problem (Chen, Hong, & Harris, 2010; Poggio
& Girosi, 1990). The pre-filter and k cross validation are
useful to provide a tradeoff between the training accuracy and
generalization performance, but additional computations are
incurred.

• If the training data does not contain sufficient information, a
model with no or low bias but high variance may not have a
satisfactory prediction accuracy. A biased model may be more
desirable using a good bias/variance trade-off technique (Jo-
hansen, 1997; Poggio & Girosi, 1990).

• If small changes in the data can result in a very different model,
then the model is less robust and its prediction accuracy is re-
duced (Tibshirani, 1996).

Given these above considerations, regularization methods are
popular techniques to build sparse, robust and biased models by
imposing additional penalties or constraints on the solution. A gen-
eral regularization algorithm is the Tikhonov regression that adds
a penalty term to sum squared error (SSE) cost function (Bishop,
1997; Johansen, 1997; Moussaoui et al., 2005), which is given by

CF Tikhonov =

N
t=1

ξ 2(t) + λ

M
i=1

DF i (3)

where the regularization parameter λ controls the fitting smooth-
ness and the model size. DF i denotes the function derivatives of
different orders. However, this may be computationally too de-
manding. More recently, the ridge regression and least absolute
shrinkage and selection operator (LASSO) use additional l2 norm
and l1 norm penalties, respectively. The cost function becomes

CF ridge =

N
t=1

ξ 2(t) + λ

M
i=1

θ2
i (4)

and

CF lasso =

N
t=1

ξ 2(t) + λ

M
i=1

|θi|. (5)

These two methods use simplified penalty terms on weights
and they aim to minimize the sum of SSE and norms of model
weights. Though the ridge regularization can shrink the large
weights towards zeros but has little effects on small weights
(Kump et al., 2012). Unlike the ridge regression, LASSO has the
potential to shrink some weights to exact zeros and can be inter-
preted as a Bayesian estimator (Tibshirani, 1996). More recently,
somemodifications have been proposed on the penalty term, such
as using the differences between adjacent coefficients (Ohlsson,
Ljung, & Boyd, 2010) or differences among all the coefficients
(Ohlsson & Ljung, 2013). The difficulty is to mathematically give
an explicit solution for the optimal regularization parameter λ. The
optimal regularization parameter can be determined by cross vali-
dation. Alternatively, it can be estimated by the Bayesian frame-
work under Gaussian prior distributions. Though a number of
algorithms have been proposed (Osborne, Presnell, & Turlach,
2000; Rosset & Zhu, 2007; Tibshirani, 1996),most of themare com-
putationally inefficient compared to the forward selection.

As a promising regularization scheme – the least angle regres-
sion (LAR) – has been proposed and widely studied (Efron, Hastie,
Johnstone, & Tibshirani, 2004). It is a variant of the forward selec-
tion as it begins with an empty model with initially no regressor
and then selects one term at a time until a stop criterion is satis-
fied. Unlike the forward selection where the model weights (coef-
ficients) are identical to the least squares solution, the least angle
scheme is used to determine the weights. LAR has a few distinctive
advantages. First, it is computationally just as fast as the forward
selection and more efficient than LASSO methods due to its com-
plete piecewise linear path. Further, it can be easily modified to
produce solutions for LASSO estimator. However, the LAR is still a
local method and may not produce a sparser model than the for-
ward selection and LASSO methods.

The main objective of this paper is to improve the model
sparsity and generalization performance of the LAR algorithm.
This is achieved by introducing a replacement scheme using an
additional refinement stage. The new method has a forward LAR
stage and backward LAR stage. The forward LAR is the same as
the original LAR. The backward stage compares the significance
of each term in the initial model with the remaining terms in
the candidate pool and then replaces insignificant ones, leading
to an improved model in terms of compactness and performance.
The main difference with our previous work on forward and
backward methods is that the least angle scheme rather than least
squares approach is employed to determine themodel coefficients.
Unlike other existing model pruning methods, the proposed
method employs the replacement scheme instead of elimination.
Further, the LAR is a computationally efficient regularization
method without additional computational efforts to determine
the regularization parameter. A more detailed difference analysis
is given in Section 3. Extensive numerical simulations on the
construction of four NARX models, including the polynomial, RBF,
neuro fuzzy andwaveletmodels are presented to demonstrate that
the newmethod is able to produce sparser model than the original
LAR algorithm and some alternatives.
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