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a b s t r a c t

This paper studies finite- as well as infinite-time horizon nonzero-sum polynomial differential games. In
both cases, we explore the so-called state-dependent Riccati equations to find a set of strategies that guar-
antee an open-loop Nash equilibrium for this particular class of nonlinear games. Such amethod presents
advantages in simplicity of the design of equilibrium strategies and yields computationally effective so-
lution algorithms. We demonstrate that this solution leads the game to an ε- or quasi-equilibrium- and
provide an upper bound for this ε quantity. The proposed solution is given as a set of N coupled poly-
nomial Riccati-like state-dependent differential equations, where each equation includes a p-linear form
tensor representation for its polynomial part. We provide an algorithm for finding the solution of the
state-dependent algebraic equation in the infinite-time case based on a Hamiltonian approach and give
conditions on the existence of such stabilizing solutions for a third order polynomial. A numerical example
is presented to illustrate effectiveness of the approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Amongmanydifferent fields such as engineering, ecology,man-
agement and economics, we find situations that involve several
Decision-Makers (or Players) with different goals or objectives in-
terlinked by the same decision process. This means that all of them
are interacting and influencing each other by the decision they
made: the action taken by any of the participants affects the others,
and vice versa. Particularly, when the evolution of the underlying
decision process evolves in time, this type of problems are often
optimized using the Theory of Dynamic Games (Cruz & Xiaohuan,
2009; Dockner, Jorgensen, van Long, & Sorger, 2000; Gu, 2008;
Huang, Caines, & Malhamé, 2007; Jorgensen, Martin-Herran, & Za-
ccour, 2010; Jungers, Castelan, De Pieri, & Abou-Kandil, 2008;Ma&
Peng, 1999; Ma, Wang, Bo, & Guo, 2011; Maler & de Zeeuw, 1998;
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Maler, Xepapadeas, & de Zeeuw, 2003;Mukaidani, 2013;Nourian&
Caines, 2013; Semsar-Kazerooni & Khorasani, 2009; Wang, Huang,
&Unbehauen, 1999; Zhang, Cui, & Luo, 2013). This theorywas initi-
ated in the works of Isaacs (1965): he focused mainly on zero-sum
games. Later on, the nonzero-sum differential games were intro-
duced in Ho (1970) and Starr and Ho (1969a,b). In such games,
each player looks for minimization of his own individual criterion.
The paper (Starr & Ho, 1969b) derived sufficient conditions of ex-
istence of a linear feedback equilibrium for a finite planning hori-
zon, but only in the case of linear–quadratic games governed by
linear dynamics and quadratic criterion. (See Engwerda, 2005 for
a detailed survey and Engwerda, 1998, 2000 and Engwerda, van
Aarle, & Plasmans, 1999; Engwerda, van de Broek, & Schumacher,
2000). Usually, to resolve a conflict situation, the Nash-equilibrium
(or, in general case, ε-Nash equilibrium) is applied (Basar & Olsder,
1999; Jimenez & Poznyak, 2006; Nash, 1950; Tanaka & Yokoyama,
1991). It is recognized that Nash equilibrium is a natural solution in
a noncooperative context. However, if we deal with complex non-
linear dynamics, it seemsmore appropriate to apply the concept of
ε-Nash equilibrium, since it allows one more flexibility in the se-
lection of equilibrium strategies (see Basar & Olsder, 1999, Tanaka
& Yokoyama, 1991).

In many applications, the originally linear modeling cannot fit
all the situations in practice, which aremostly nonlinear by nature.
Therefore, we need to extend the equilibrium concepts to a certain
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class of nonlinear systems, namely, polynomial systems. Polyno-
mial dynamics represents an important class of nonlinear dynami-
cal systems, since it can approximate a large variety of intrinsically
nonlinear functions, keeping the complexity on a manageable and
pre-specified level. Compared to the linear–quadratic case, there
are not so many works on nonlinear differential games and, par-
ticularly, to the best of authors’ knowledge, no results have been
obtained for polynomial differential games (excluding a short con-
ference version of this paper Jimenez-Lizarraga, Basin, Rodriguez,
& Rodriguez, 2013). A few recent papers related to nonlinear differ-
ential games can bementioned. The paper (Kossiorisa, Plexousakis,
Xepapadeas, de Zeeuwe, & Maler, 2008) presents a solution in a
particular case of a nonlinear game representing a pollution and
resource management problem. The paper (Sorger, 1995) identi-
fies the potentially chaotic behavior in a Markovian Nash equilib-
rium in a duopoly discrete-time model of advertising competition.
The recent paper (Zhang, Wei, & Liu, 2011) proposes an iterative
adaptive dynamic programming method to solve a particular type
of games called two players zero-sum games. Another important
reference close to this work is (Zhang & Feng, 2008), where a two
players nonzero sum Nash game is applied to solve the problem of
H2/H∞ control. All these publications express the interest in find-
ing equilibrium strategies in complex non-linear systems.

In this paper,wedevelop the State-Dependent Riccati Equations
(SDRE) approach (Barabanov, 1997; Barabanov, Ortega, & Escobar,
2008; Basin & Calderon-Alvarez, 2009; Basin, Perez, & Skliar, 2006;
Çimen, 2008; Mracek & Cloutier, 1998) for a nonlinear polynomial
game and derive a set of controls that leads to an open-loop ε-Nash
equilibrium. For one player optimization problem (optimal con-
trol), the SDRE method has been proven to work well in many
particular situations, providing a simple procedure for designing
feedback controls (see Basin & Calderon-Alvarez, 2009, Basin et al.,
2006, Çimen, 2008, Dong, Wang, & Gao, 2010, Gao, Shi, & Wang,
2007, Mracek & Cloutier, 1998, Rodrigues, 2004, 2007); however,
the general case solution is quasi-optimal, that is, the SDRE ap-
proach leads only to an approximate result. This is why the SDRE
method provides an ε-equilibrium for a game problem. Neverthe-
less, fast convergence of the obtained solution to the optimal one,
a feedback form for the equilibrium controls, and numerical feasi-
bility make the SDRE approach a valuable method. Both finite- and
infinite-time cases are studied and solved for nonlinear polynomial
games. In the finite-time case, the solution is represented as a set of
N coupled state-dependent Riccati equations and a numerical pro-
cedure is suggested to find it. The infinite-time game problem is
solved extending geometric methods developed for linear systems
in Engwerda (2005). Note that in case of a scalar linear two players
game, the associated characteristic matrix always has one stable
eigenvalue (see Abou-Kandil & Bertrand, 1986); however, there is
no similar result, to the best of the author’s knowledge, for nonlin-
ear polynomial games. The dependence of the characteristicmatrix
on x in the polynomial case makes the linear results inapplicable.
Thus, the conditions on the parameters of a polynomial game pre-
sented in this paper determine existence or nonexistence of sta-
bilizing solutions for a third order polynomial two players game.
Moreover, it is established that the given controls stabilize the non-
linear game to the only equilibrium point: the origin.

For ε-Nash equilibrium provided by the obtained SDRE, the pa-
per presents an explicit formula to find the upper bound for its
possible deviation from the pure equilibrium (ε = 0). In the given
example, those upper limits are explicitly calculated and shown to
be less than 1% for each cost function. This indicates a close approx-
imation of the optimal solution by an SDRE-based one and reveals
quite a small level of degradation.

2. Problem statement

Consider the following polynomial differential game, where the
players’ dynamics is governed by the differential equation:

ẋ(t) = f (t, x)+

N
j=1

Bj(t)uj(t)+ d(t),

x (t0) = x0,

(1)

and a quadratic cost functional as the individual performance index
for each player:

LiT (u
i, u−i) =

1
2
xT (T )Q i

f x(T )

+
1
2

 T

t0


xT (t)Q i

1(t)x(t)+

N
j=1

ujT (t)Rij(t)uj(t)


dt, (2)

where x (t) ∈ Rn is the state vector of the game, uj is the control
(action) of each j-player, which varies within a given region U j

⊂

Rmj , jdenotes the number of players (j = 1, . . . ,N) , Bj(t) ∈ Rn×mj

are the control matrices, and d (t) ∈ Rn is a continuous known
exciting signal. The performance index LiT (u

i, u−i) is given in the
Bolza form, where ui is the control of the i player and u−i are
the controls for the rest of the players (−i is the counter-coalition
collection of players counteracting to the player with index i). For
each player, the purpose of the game is to achieve theminimization
of his own performance index by selecting appropriate inputs. We
also assume that:

Q i(t) = Q i⊤(t) ≥ 0, Q i
f = Q i⊤

f ≥ 0,

Rii (t) = Rii⊤ (t) > 0, Rij (t) = Rij⊤ (t) ≥ 0,
i ≠ j.

(3)

We consider the nonlinear function f (t, x) as a polynomial of n
variables, components of the state vectors x (t) ∈ Rn; this requires
a special definition of the polynomial for degrees n > 1. Following
the previouswork (see Basin et al., 2006), a p-degree polynomial of
a vector x (t) ∈ Rn is regarded as a p-linear form of n components
of x (t), that is to say:

f (t, x) = a0 (t)+ a1 (t) x + a2 (t) x ∗ xᵀ

+ · · · + as (t) x ∗ · · · s times · · · ∗ x. (4)

Here, the involved parameters are: a0 is a vector of dimension n, a1
is a matrix of dimension n × n, a2 is a 3D tensor of dimen-
sion n × n × n, and as is an (s + 1)D tensor of dimension n ×

· · · (s + 1) times · · · × n, and x ∗ · · · s times · · · ∗ x is a pD tensor
of dimension n × · · · s times · · · × n, obtained by p times spatial
multiplication of the vector x by itself. It is also possible to repre-
sent such a polynomial in a summation form:

fk (t, x) = a0,k(t)+

n
i=1

a1,k,i(t)xi +
n

i,j=1

a2,k,i,j(t)xixj

+ · · · +

n
i1,...,is=1

a1,k,i1,...,is(t)xi1 . . . xis . (5)

For given available information sets ηi (t) and a given set of
strategies γ i

∈ Γ i (i ∈ N), the control actions are completely de-
termined by the relations ui

= γ i (ηi). Substituting the set ui into
the cost functional (2) for a fixed final time T leads to the num-
ber LiT (u

i, u−i), i ∈ N, that is the cost incurred by player i defined
in the control action space (Basar & Olsder, 1999). For fixed initial
state x0, we get the mapping defined by

J iT : Γ 1
× Γ 1

× · · · × Γ N
→ R,

γ 1, γ 2, . . . , γ N
→ LiT (u

i, u−i),
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