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a b s t r a c t

Following the general dynamic observer error linearization problem, state equivalence to a triangular
nonlinear observer canonical form with index d and the restricted dynamic observer error linearization
problem are defined. In this paper, the necessary and sufficient conditions for the above two problems are
given. Since our proofs are constructive, a desired state transformation can also be found in the theorem.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the nonlinear observer design methods is to find a new
state coordinate (and an output transformation) that transforms
the given system into a nonlinear observer canonical form (NOCF),
as first suggested in Bestle and Zeitz (1983) and Krener and Isidori
(1983). Then, a simple Luenberger-like observer design is feasible
for a NOCF, as in Remark 1. We call this problem observer error
linearization or the state equivalence to a NOCF which has been
studied bymany researchers in Besancon (1999), Califano,Monaco,
and Normand-Cyrot (2003, 2009), Chung and Grizzle (1990), Hou
and Pugh (1999), Huijberts (1999), Keller (1987), Krener and
Respondek (1985), Lee, Arapostathis, and Marcus (2008), Lee and
Hong (2011), Lee and Nam (1991), Lin and Byrnes (1995), Xia
and Gao (1988) and Xia and Gao (1989). The observer error
linearization problem is a sort of dual concept of the feedback
linearization problem. Thus, following the dual concept of the
dynamic feedback linearization problem, the dynamic observer
error linearization problem can also be defined to enlarge the class
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of the nonlinear systems for Luenberger-like observer designs.
Now we define the dynamic observer error linearization problem
and then we give the recent developments in the research of this
area.

Consider an autonomous system of the form

ẋ(t) = F

x(t)


; y(t) = h(x(t)) (1)

with f (0) = 0, h(0) = 0, state x ∈ Rn, and output y ∈ R.
Throughout the paper, we assume the observability rank condition
on the neighborhood of the origin:

dim span{dh(x), dLFh(x), . . . , dLn−1
F h(x)} = n. (2)

Thus, we can assume, without loss of generality, that

F(x) = [x2 · · · xn α(x)]T; h(x) = x1. (3)

Definition 1. System (1) is said to be state equivalent to a trian-
gular nonlinear observer canonical form (TNOCF) with index d, if
there exists a smooth diffeomorphism S : V0 → Rn, defined on
some neighborhood of the origin V0 ⊂ Rn, which transforms (1),
in the variable z = S(x), to

ż = A0z + γ (z1, . . . , zd+1); y = C0z (4)

where γ : Rd+1
→ Rn is a smooth function with ∂γi

∂zj
= 0 for

j > i + 1, C0 =

1 O1×(n−1)


, and A0 =


O(n−1)×1 I(n−1)×(n−1)

0 O1×(n−1)


.

TNOCF (4) is useful for a Luenberger-like observer design, when
{ẏ, ÿ, . . . , y(d)

} are available in addition to y. Following Back, Yu,
and Seo (2006),wedefine the restricted dynamic observer problem
as follows.
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Definition 2. System (1) is said to be restricted dynamic observer
error linearizable (RDOEL) with index d, if there exists the re-
stricted dynamic system with index d (called auxiliary dynamics)

ẇi =


wi+1, 1 ≤ i ≤ d − 1
y, i = d , p(w, y) (5)

such that the extended system

ξ̇ ,


ẇ
ẋ


=


p

w, h(x)


F(x)


, f (ξ)

ya = w1

(6)

is state equivalent to a TNOCF with index d.

System (1) is said to be RDOEL, if system (1) is RDOELwith some
index d. If we use a general nonlinear dynamic system ẇ = p̄(w, y)
in Definition 2, system (1) is said to be DOEL with index d.

Remark 1. If system (1) is RDOEL with index d, then there exists
a smooth diffeomorphism S : V0 → Rn

× Rd, defined on some
neighborhood of the origin V0 ⊂ Rn

× Rd, which transforms (6), in
the variable z = S(x, w) = S(ξ), to a TNOCF with index d given by

ż = Az + γ (z1, . . . , zd+1); ya = Cz (7)

where γ : Rd+1
→ Rn+d is a smooth vector function, C =

1 O1×(n+d−1)

, and A =


O(n+d−1)×1 I(n+d−1)

0 O1×(n+d−1)


. Thus, choosing

L ∈ R(n+d)×1 such that (A − LC) is Hurwitz, we can design a state
estimator

ẇ = p(w, y), w ∈ Rd

˙̂z = (A − LC)ẑ + γ (w, y) + Lw1, ẑ ∈ Rn+d

ξ̂ ,

ŵT x̂T

T
= S−1(ẑ)

(8)

that yields an asymptotically vanishing error, i.e., limt→∞ ∥ξ(t) −

ξ̂ (t)∥ = 0 or limt→∞ ∥x(t) − x̂(t)∥ = 0.

An observer for system (1) using dynamic observer error
linearization is system (5) and system (8). Thus, the dimension of
the observer state is n + 2d. Another interesting observer design
problemwith a dynamic compensator, using immersion instead of
the dual concept of dynamic feedback linearization compensator,
can also found in Back and Seo (2006), Jouan (2003) and Levine
and Marino (1986). The relation between these two problems can
be found in Section 3 of Back et al. (2006).

The RDOEL problem has been studied in Lee and Hong (2012)
and Noh, Jo, and Seo (2004) with using w1 only in the observer
design. But, the observer design in Definition 2, which is first
suggested in Back et al. (2006), is more powerful, since w and y
are used. The sufficient problems of RDOEL problem have been
investigated by Back et al. (2006) and Boutat and Busawon (2011).
Very recently, Califano and Moog (2014) have found the necessary
and sufficient conditions for system (1) to be DOEL by using the
multi-output scheme ya = [w1 · · · wd y]T in Definition 2.
The purpose of this paper is to obtain the necessary and sufficient
conditions for system (1) to be RDOEL with the standard single
output scheme in Definition 2. As we see in Example 4, our
conditions cannot be applied for (general) DOEL problem,while the
conditions of Califano andMoog (2014) can be. If system is RDOEL,
then our solution is different from the one of Califano and Moog
(2014), asmentioned in Remark 4. Our conditions for RDOEL are, as
in the Appendix, simply implemented by aMATLAB programming,
because the conditions of Theorem 1 contain only the Lie brackets
of the vector fields. Finally, we obtain the necessary and sufficient
conditions for the state equivalence to a TNOCF with index d.

2. Preliminaries

In this section, we derive the necessary conditions for the
dynamic observer error linearizabilitywith index d, which are used
in the proof of the main theorem in the next section. We refer the
reader to Isidori (1995), Marino and Tomei (1995) and Nijmeijer
and van der Schaft (1990) for the basic definitions and results in
nonlinear systems and differential geometry. Suppose that system
(1) is RDOEL with index d. Then the extended system

ξ̇ =

ξ2 · · · ξn+d ᾱ(ξ)

T
= f (ξ) ; ya = ξ1 (9)

is state equivalent, via state transformation z = S(ξ), to

ż = f̄ (z) ; ya = z1
f̄i = zi+1 + γi(z1, . . . , zi+1), 1 ≤ i ≤ d

f̄i = zi+1 + γi(z1, . . . , zd+1), d + 1 ≤ i ≤ n + d − 1

f̄n+d = γn+d(z1, . . . , zd+1)

(10)

where [ξ1 ξ2 ξ3 · · · ξn+d] = [w1 · · · wd x1 · · · xn] and
ᾱ(ξ) = α(ξd+1, . . . , ξn+d).

Lemma 1. If system (9) is state equivalent to TNOCF (10), then
system (9) is state equivalent to TNOCF (10) with

γi(ξ1, . . . , ξi+1) = 0, 1 ≤ i ≤ d − 1. (11)

Proof. Suppose that system (9) is state equivalent to TNOCF (10)
via z = S(ξ). Let z̄ = T̄ (z), where z̄1 = z1, z̄i = zi+γi−1, 2 ≤ i ≤ d,
and z̄i = zi, d + 1 ≤ i ≤ n + d. Then we have

˙̄z i = z̄i+1, 1 ≤ i ≤ d − 1
˙̄z i = z̄i+1 + γ̃i+1(z̄1, . . . , z̄d+1), 1 ≤ i ≤ d − 1
˙̄zn+d = γ̃n+d(z̄1, . . . , z̄d+1)

ya = z̄1

(12)

where, with a slight abuse of notation, for d ≤ i ≤ n + d,
γ̃i , γi(z̄1, z2(z̄1, z̄2), . . . , zd(z̄1, . . . , z̄d), z̄d+1). Therefore, system
(9) is state equivalent to TNOCF (12) via z̄ = T̄ ◦ S(ξ).

Lemma 2. System (9) is state equivalent to TNOCF (10), if and only
if

ᾱ(ξ) =

n+d
i=d

Ln+d−i
f γ̄i(ξ1, . . . , ξd+1) (13)

where, with a slight abuse of notation, for d ≤ i ≤ n + d,

γ̄i(ξ1, . . . , ξd+1) , γi(ξ1, . . . , ξd, zd+1(ξ1, . . . , ξd+1)). (14)

Furthermore, the state transformation z = S(ξ) satisfies

zi = ξi, 1 ≤ i ≤ d

zd+i = ξd+i −

i−1
k=0

Li−1−k
f γ̄d+k, 1 ≤ i ≤ n

(15)

or

ξi = zi, 1 ≤ i ≤ d

ξd+i = zd+i +

i−1
k=0

Li−1−k
f̄

γd+k, 1 ≤ i ≤ n.
(16)

Proof. Obvious.

For a vector field τ1, define τ2 = adf τ1 =
∂τ1
∂ξ

f −
∂ f
∂ξ

τ1, and
τi = adi−1

f τ1 = adf (adi−2
f τ1), i ≥ 3.
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