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a b s t r a c t

This paper addresses the problem of optimal control for semi-active vehicle suspensions. A specific goal
is to develop an algorithm which is capable of optimising ride and handling behaviour simultaneously
in an experimental situation. A time-domain optimal control approach is adopted in which ride and
handling are modelled as exogenous disturbances acting on the vehicle: road disturbances (modelled
stochastically), and driver inputs (treated as deterministic quasi-static disturbances). A control algorithm
is derived from a solution of the stochastic Hamilton–Jacobi–Bellman equation for the finite horizon case.
The advantages of the approach are demonstrated experimentally on a test vehicle performing a steering
manoeuvre on a bumpy roundabout.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is concerned with the design and experimental
implementation of a clipped-optimal Linear Quadratic (LQ) semi-
active suspension system. We focus on a suspension design
framework which aims to insulate the body simultaneously from
both road irregularities and handling disturbances (driver inputs,
e.g. due to cornering, braking, etc.). Recent work on LQ semi-
active suspension design – see for example Butsuen and Hedrick
(1989), Du, Sze, and Lam (2005), Gordon (1995), Hrovat (1997),
Savaresi, Poussot-Vassal, Spelta, Sename, andDugard (2010), Sharp
and Peng (2011) and Tseng and Hedrick (1994) and references
therein – has often concentrated on the vehicle’s response to
road disturbances only. The incorporation of load disturbances
into an LQ optimal control and estimation framework was
proposed in Brezas and Smith (2013) in the context of active
vehicle suspensions to deal with handling inputs. There, it was
demonstrated, in simulation examples, that the use of a quasi-
static model of the load forces is necessary both for effective
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control and to ensure good performance of the estimator. In the
present work this approach is extended to the case of semi-active
suspensions. We approach the optimal control problem by solving
a stochastic Hamilton–Jacobi–Bellman (HJB) equation on a finite
horizon, which motivates a constant gain clipped-optimal control
law. This paper presents an experimental implementation of the
algorithm on a prototype vehicle (made available as a test platform
for this research) which clearly demonstrates the advantages of
the approach (i.e., incorporating a model of the load disturbances
in the control and estimator design). The vehicle was subjected
to a slalom-type manoeuvre involving large steering inputs and
significant road undulations. We provide a comparison with the
standard LQG control in the literature (i.e., ignoring the load
disturbance modelling), as well as a comparison with two fixed
damping policies.

2. Quarter-car model and problem formulation

A typical semi-active suspension has a fixed spring ks in parallel
with a rapidly adjustable damper with damping coefficient u(t)
that satisfies an inequality of the form
0 < cmin ≤ u(t) ≤ cmax. (1)
As usual for the control design, we take the suspension spring
to be linear and we approximate the tyre by a linear spring. The
equations of motion are given by
msz̈s = Fs − ks(zs − zu)− u(żs − żu) (2a)
muz̈u = ks(zs − zu)+ u(żs − żu)− kt(zu − zr), (2b)
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where zs, zu, zr are the displacements of the sprungmass, unsprung
mass and road, ms, mu, ks, kt are the respective mass and spring
constants. In this section we assume that zr is a Wiener process,
i.e. żr is Gaussian white noise. (For the full-car vehicle model we
take a more realistic coloured noise road disturbance excitation.)
As in Brezas and Smith (2013), Smith (1995) and Smith and Wang
(2002) we include a load disturbance Fs on the sprung mass to
approximatelymodel the effect of handling inputs. More precisely,
Fs effectively models the inertial forces induced by handling
manoeuvres (such as cornering, braking, etc.) on the body, changes
to static loads, as well as the aerodynamical loads and is treated
deterministically. We can write the bilinear model in state-space
form as

ẋ = Ax + BNT xu + Fd + Gw, (3)
where x = [zs − zr , żs, zu − zr , żu]T ∈ R4, u ∈ U , [cmin,
cmax], d = Fs ∈ R, andw = żr ∈ R. Displacements are chosen
relative to the road (rather than as absolute displacements) and
the corresponding state-spacematrices can be found in Brezas and
Smith (2013). This has certain advantages in case the model is
subjected to ramp inputs in zr .

We make the common assumption that the adjustable damper
can deliver the requested (admissible) damping instantaneously.
Practical limitations would apply but these depend on the type
of adjustable damper used (see Poussot-Vassal, Spelta, Sename,
Savaresi, & Dugard, 2012 formore details). The reader is referred to
Elmadany, Abduljabbar, and Foda (2003), Fialho and Balas (2002),
Hac (1994), Hrovat (1990), Ray (1992), Ulsoy, Hrovat, and Tseng
(1994), Williams and Haddad (1997), Wilson, Sharp, and Hassan
(1986) and Youn, Im, and Tomizuka (2006) for further background
on LQ active suspensions.

We consider the performance index

J = E

1
2

 T

0


q0z̈2s + q1(zs − zr)2 + q2ż2s

+ q3(zu − zr)2 + q4ż2u + ru2 dt, (4)

which is to be minimised over u. We take an initial condition x0
which is a Gaussian randomvector independent ofw. We note that
J includes the sprungmass acceleration, tyre deflection and sprung
mass displacement weightings (which are directly related to the
main objectives), but also the sprung and unsprung velocity and
controlweightingswhich can in general be used formore flexibility
in tuning (e.g. to achieve well-damped responses). We can write
the performance index as

J = E
 T

0
l(x, u)dt


, (5)

where

l(x, u) =
1
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,

S1 = M1NT , S2 = M2,

S3 = M3NT , and R1 = RNNT .

The entries of Q , M1, M2, M3, R and R2 can be found in Brezas and
Smith (2013).

3. Clipped-optimal stationary control

In this section we provide a treatment of the optimal semi-
active suspension control problem for the quarter-car model
that also includes a deterministic load disturbance acting on the
sprung mass. We first show that an optimal control exists, and
subsequently we apply the sufficient conditions for optimality to
obtain an optimal control.

3.1. Optimal control formulation

For l(x, u) defined in Section 2we formalise our optimal control
problem as follows:

Minimise E
 T

0
l(x, u)dt


over measurable u : [0, T ] → R

and loc. abs. continuous x : [0, T ] → R4, s.t.
ẋ = Ax + BNT xu + Fd + Gw,
x(0) = E [x0] , u(t) ∈ U .


.

(P)

In this section we assume that the full state x is available for
feedback. In Section 4.3 we describe the use of a Kalman filter to
estimate the state for a full-car vehicle model.

3.2. Existence of an optimal control

Lemma 1. The problem (P) has an optimal solution.

Proof. It is straightforward to see that the conditions for existence
of solutions in Fleming and Rishel (1975, Theorem 6.3, p. 170) are
satisfied by the problem (P). �

3.3. Sufficient conditions for optimality

Theorem 2. Consider the problem (P). Assume that, for a given initial
state x0, it is possible to find a control

ū = sat [cmin,cmax]


−(NT x)−1R−1 

(BTP + M1)x

− BTσ + M3d

, (6)

and a solution to the following boundary value problem:

ẋ =


(A + BNT cmin)x + Fd, ū = cmin

(A − BR−1(BTP + M1))x
− BR−1BTσ + (F − BR−1M3)d, ū ∈ (cmin, cmax)

(A + BNT cmax)x + Fd, ū = cmax

where P(t) is a symmetric positive-definite matrix and σ(t) a vector
satisfying

Ṗ =


φ1(P), ū = cmin
φ2(P), ū ∈ (cmin, cmax)
φ3(P), ū = cmax

(7)

σ̇ =


ψ1(σ ), ū = cmin
ψ2(σ ), ū ∈ (cmin, cmax)
ψ3(σ ), ū = cmax

(8)

where

φ1(P) = −P(A + BNT cmin)− (A + BNT cmin)
TP − Q

− 2M1NT cmin − Rc2min,

φ2(P) = −P(A − BR−1MT
1 )− (A − BR−1MT

1 )
TP

+ PBR−1BTP − Q + M1R−1MT
1 ,

φ3(P) = −P(A + BNT cmax)− (A + BNT cmax)
TP − Q

− 2M1NT cmax − Rc2max,

ψ1(σ ) = −(AT
+ NBT cmin)σ − (PF + M3NT cmin + M2)d,

ψ2(σ ) = −

AT

− M1R−1BT
− PBR−1BT  σ

−

M2 − M1R−1M3 + P(F − BR−1M3)


d,

ψ3(σ ) = −(AT
+ NBT cmax)σ − (PF + M3NT cmax + M2)d,

with boundary conditions x(0) = x0, P(T ) = 0, and σ(T ) = 0.
Then, ū is an optimal control.



Download English Version:

https://daneshyari.com/en/article/7109944

Download Persian Version:

https://daneshyari.com/article/7109944

Daneshyari.com

https://daneshyari.com/en/article/7109944
https://daneshyari.com/article/7109944
https://daneshyari.com

