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a b s t r a c t

In this paper, by applying the canonical decomposition of the right invertible system {C, A, B} obtained in
Wei, Cheng andWang (2010),wederive all explicit solutions of the regular triangular decoupling problem,
and then characterize all attainable transfer function matrices for the decoupling and pole assignment
problem.
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1. Introduction

Consider the system {C, A, B} described by .
x (t) = Ax(t) + Bu(t),
y(t) = Cx(t), (1)

where x(t) is an n-dimensional state vector, u(t) is an p-dimen-
sional input vector, y(t) is an m-dimensional output vector, and
the related closed-loop transfer matrix function is

T (s) def
= C(sIn − A)−1B.

For the control system (1), we associate with the following state
feedback control rule

u(t) = Fx(t) + Gv(t), (2)

where v(t) is a new m-dimensional input, and the related closed-
loop transfer matrix function is

TF ,G(s)
def
= C(sIn − A − BF)−1BG. (3)
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The triangular decoupling problem (TDP) via state variable
feedback can be stated as follows: Find matrices F and G, so that
the system in (1) togetherwith the state feedback law (2) results in
a closed-loop transfer function (3), which has a nonsingular lower
triangular form up to row permutation.

Compared with the row-by-row decoupling problem (RRDP),
the TDP requires less restrictive conditions. It can be shown that
when a system may be row-by-row decoupled, it may also be put
in a triangular form (the converse statement is false). Inmany cases
the row-by-row decoupling controller yields more prohibitive ef-
forts on the control variables than those obtained with a triangular
one. So if no particular specifications are imposed, wewould prefer
to choose the latter. On the other hand, even if a system can be row-
by-row decoupled, dynamic extension may be required for either
realization or stabilization. Since for such systems a stable triangu-
lar structure can always be achieved without additional dynamics,
it is clear that a triangular decoupling controller is still competitive.

The TDP was first formulated and solved by Morse and Won-
ham in Morse and Wonham (1970), their approach emphasized
particularly geometric characterizations. In their paper, they gave a
geometric formulation of the state feedback triangular decoupling
problem and presented necessary and sufficient conditions for the
existence of decoupling matrices. Under the conditions that the
systemwas completely controllable, they outlined a procedure for
simultaneously realizing a triangular structure and assigning the
poles of the closed-loop system transfer function matrix. Then in
Desusse and Lizarzaburu (1979), Descusse and Lizarzaburu were
concerned with the following system: .
x (t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).
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In their paper, (A, B) and (A, B, C,D) were assumed to be con-
trollable and output controllable, respectively. They proposed an-
other approach, based on the structure algorithm of Silverman
and Payne (1971), which was a completely general but algebraic
one, and was easily tractable on computers. They were concerned
with an algebra formulation of the state feedback TDP in the case
D ≠ 0. They presented necessary and sufficient conditions for the
existence of decoupling matrices for an (A, B, C,D) quadruple and
outlined a procedure for simultaneously realizing a triangular
structure and assigning any desired spectrum to the closed loop
system. Theirmain interestwas that itwas suited for computer im-
plementation, which was not the case with a geometric approach.

The TDP for systems over principal ideal domains or in Hilbert
spaces were discussed in Inaba and Otsuka (1989) and Ito and
Inaba (1997), respectively, which were a natural generalization of
systems over the field of real numbers. In Mutoh and Nikiforuk
(1992), Mutoh and Nikiforuk presented a simple method on
how to generate the state feedback which made the closed-loop
transfer matrix the inverse of the interactor matrix. They also
considered an arbitrary pole assignment which preserved the
lower left triangular form of the inverse of the interactor matrix
under the condition that (A, B, C)was completely controllable and
observable.

Recently, numerical reliable methods were proposed for vari-
ous problems related to the system decoupling problems in Chu
and Mehrmann (2001), Chu and Tan (2002a) and Chu and Tan
(2002b). Furthermore, in Chu and Tan (2002b), Chu et al. obtained
new solvability conditions and parameterized all the solutions for
the regular TDP based on a condensed form. Triangular decoupling
problem with stability (TDPS) was also discussed in Chu and Tan
(2002b).

For the right invertible system (that is, rankg [C(sI − A)−1B] =

m) (1), if p > m, (1) is called a non-regular system; if p = m, (1)
is called a regular system, which was also an invertible system.
In Wei, Cheng, and Wang (2010), Wei, Cheng and Wang (2010)
proposed a canonical decomposition of the right invertible system
{C, A, B}. By this canonical decomposition, they studied the Smith
form of thematrix pencil P(s) =


A − sI B

C 0


, the range of the ranks

of P(s) for s ∈ C and the invariant quantities of the right invertible
system {C, A, B}. In another article (Wei, Wang & Cheng, 2010),
Wei, Wang, Cheng studied the necessary and sufficient conditions
of the regular RRDP and the non-regular TDP. It turned out that this
canonical decomposition of the right invertible system {C, A, B}
was suitable for studying problems involving all three matrices
A, B, C . Recently in Wei and Shen (2013), we deduced equivalent
conditions of controllability, stability and observability of the
right invertible system {C, A, B}. We also derived three equivalent
sufficient solvability conditions of the non-regular RRDP, which
made the base of our further studying the non-regular RRDP. In
our another article (Shen & Wei, 2013), we applied this canonical
decomposition to derive a general formula of all solutions to the
regular RRDP. Based on this formulawe characterized all attainable
transfer function matrices for the decoupling and pole assignment
problem in general cases.

In this paper we are concerned with the regular TDP. Based
on the canonical decompositions of the right invertible system,
we not only derive all explicit expressions of regular TDP up to
row permutation but also completely describe the closed-loop
structure of a decoupling system. The set of assignable poles as
well as the set of fixed decoupling poles are determined in a more
general case without any restricted condition. So the regular TDPS
in Chu and Tan (2002b) can be solved directly.

The paper is organized as follows. In Section 2, we provide
some preliminary results; in Section 3, we derive all solutions of
the regular TDP; in Section 4, we study the decoupling and pole
assignment for the regular TDP; in Section 5, we provide some
numerical examples; and finally in Section 6, we conclude this
paper with some remarks.

2. Preliminaries

Throughout this paper, we use the following notation. Rm×n

(Cm×n) is the set of m × n matrices with real (complex) entries,
Rm (Cm) is the set of m-dimensional real (complex) vectors. Rm×n

r
(Cm×n

r ) is the subset ofRm×n (Cm×n), inwhich everymatrix has rank
r . Ik denotes the identitymatrix of order k, 0l×m the l bymmatrix of
all zero entries. For a matrix A, AT , AH , rank(A), λ(A) and R(A) are
the transpose, conjugate transpose, rank, spectrum and range of
A, respectively. Re(λ(A)) denotes the real part of the eigenvalues
of the matrix A. rankg [A(s)] denotes the generic rank of a matrix
function A(s), i.e. rankg [A(s)] = maxs∈C{rank[A(s)]}.

To begin with, we state a result of the canonical decomposition
of the right invertible system of Theorem 1.1 in Wei, Cheng et al.
(2010).

Theorem 2.1 (Wei, Cheng et al., 2010). Suppose that {C, A, B} is a
right invertible system with A ∈ Cn×n, B ∈ Cn×p

p , C ∈ Cm×n
m . Then

there exists a parameters ∈ C, such that rank(A0) = n with A0 =

A −sIn. Furthermore, there exist two invertible matrices Q ∈ Cn×n,
T ∈ Cp×p, an m×mpermutationmatrix P, and a nonnegative integer
k called the index of the system, such that when k = 0,

Cm ≡ PCQ = (Im, 0), Bm ≡ Q−1BT =


Ip
0



Am ≡ Q−1A0Q =

 A00 A01 A02
A10 A11 A12

D(1)
0 D(1)

1 D(1)
2


in which A00, A11, D(1)

2 are square matrices of order m, p−m, n−p,
respectively; and when k ≥ 1,

Cm ≡ PCQ =


Ir0 0 0

D(0)
0 0 It0


r0

t0
,

r0 n−m t0

Bm ≡ Q−1BT =


Ip
0


,

Am ≡ Q−1A0Q =


X11 X12
X21 X22


p
n − p ,

p n−p

in which X11, X12, X21 and X22 are given in Box I, where

r0 = rank(CB), t0 = m − r0,
tj = tj+1 + rj+1 > 0 for j = 0 : k − 1, tk = 0,

m =

k
i=0

ri, l = n − p −

k−1
j=0

tj.

When C, A, B are real matrices, we can takes ∉ λ(A) a real
number, and the matrices Q , T , Cm, Am, Bm are real.

By Theorem 2.1, we know thatD(k+1)
k+2 is an l× l square invertible

matrix. Suppose that λ1, . . . , λq are different nonzero eigenvalues
of D(k+1)

k+2 , and D(k+1)
k+2 has a Jordan canonical form

D(k+1)
k+2 ∼ J = diag(J1(λ1), . . . , Jq(λq))

Jδ(λδ) = diag(Jδ,1(λδ), . . . , Jδ,nδ
(λδ)) for δ = 1 : q,

(4)

in which Jδ,j(λδ) are Jordan blocks,

Jδ,j(λδ) = (λδ) for δj = 1;



Download	English	Version:

https://daneshyari.com/en/article/7109947

Download	Persian	Version:

https://daneshyari.com/article/7109947

Daneshyari.com

https://daneshyari.com/en/article/7109947
https://daneshyari.com/article/7109947
https://daneshyari.com/

