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a b s t r a c t

We investigate the problem of synchronizing nonidentical or perturbed nonlinear systems. In the
considered setup, the systems are incapable to synchronize under diffusive couplings. Instead, assuming
the quad property for each system, we derive conditions under which the synchronization error can be
kept arbitrarily small by a proper choice of the interconnection structure. This motivates the definition
of practical synchronization as an alternative synchronization notion for nonidentical or perturbed
dynamical systems. The presented results are intimately related to synchronization of passive systems,
but it is shown that the stronger quad assumption is essential in our framework. The proposed concept
of practical synchronization translates directly into a notion of robust synchronization. Beyond that, the
results open the way for an investigation of synchronization phenomena on unbalanced graphs, leading
to the concept of cluster synchronization.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pecora and Carroll (1990) observed synchronization experi-
mentally in diffusively coupled circuits, showing that approximate
synchronizationwith arbitrarily small ultimate bounds on the syn-
chronization error can be enforced solely with diffusive couplings,
even if parameter mismatches between the systems are intro-
duced. These observations suggest that, for certain systems, diffu-
sive couplings are sufficient for approximate synchronization with
arbitrary precision, even if the systems are nonidentical (‘‘hetero-
geneous’’). In this paper, we investigate conditions under which
diffusive couplings are sufficient to achieve approximate synchro-
nization and that in this case, the synchronization error depends
on the heterogeneity of the systems and on the coupling strength.
In particular, the less the systems differ from each other, the lower
the ultimate bound on the synchronization error shall become and
any arbitrarily small ultimate bound on the synchronization error
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can be achieved by choosing the diffusive couplings appropriately,
motivating the notion of practical synchronization.

Related work. Several approaches aim to achieve synchroniza-
tion of nonidentical systems by imposing local controllers to the
individual systems: adaptive local controllerswere applied for syn-
chronization of systems with uncertainties (Li & Chen, 2004; Zhou,
Lu, & Lü, 2006) and it is possible to achieve impulsive synchro-
nization of uncertain systems with local control schemes (Liu, Liu,
Chen, & Wang, 2005). Moreover, systems are practically synchro-
nizable by local controllers (Femat & Solís-Perales, 1999; Sekieta
& Kapitaniak, 1996) or external signals (Brucoli, Cafagna, & Carn-
imeo, 2001). The synchronous solution of double-integrators (Carli
& Lovisari, 2012) and linear systems (Trentelman, Takaba, &
Monshizadeh, 2013) is inherently robust (with respect to het-
erogeneities and uncertainties, respectively). Other approaches
investigate the synchronization of identical systems with diffusive
couplings, but assume certain systems properties, such as pas-
sivity: relaxed cocoercivity (Scardovi, Arcak, & Sontag, 2010),
incremental passivity (Hamadeh, Stan, & Sepulchre, 2012), pas-
sivity (Arcak, 2007; Ihle, Arcak, & Fossen, 2007), and semipassiv-
ity (quasipassivity) (Pogromsky & Nijmeijer, 2001) are sufficient
for synchronization, all among identical systems. Error-passivity
is also sufficient for synchronization in nonidentical systems (Yao,
Guan, & Hill, 2009). The quad condition is a sufficient condition
for synchronization of identical systems (DeLellis, di Bernardo, &
Garofalo, 2008, 2009; DeLellis, di Bernardo, & Russo, 2011; Liu,
Cao, & Wah Wu, 2014; Liu & Chen, 2008) whereas necessary con-
ditions for synchronization were derived in terms of internal mod-
els (Wieland, Wu, & Allgöwer, 2013; Zhao, Hill, & Liu, 2011). In this
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last contribution, as well as in recent work (Grip, Yang, Saberi, &
Stoorvogel, 2012; Kim, Shim, & Seo, 2011), synchronization of non-
identical systems that are diffusively coupled via their outputs is
analyzed. Synchronization of nonidentical systems is possible by
solely applying diffusive couplings, but using infinite gains (Hale,
1997). Recently, the aforementioned results on synchronization of
systems satisfying the quad property were extended to approx-
imately synchronizing nonidentical systems with possibly non
smooth vector fields and nonlinear output couplings under the as-
sumption that the vector fields can be decomposed into a com-
mon part and a bounded heterogeneous perturbation (DeLellis, di
Bernardo, & Liuzza, 2014).

Contributions. We study synchronization phenomena in sys-
tems which do not satisfy the necessary conditions for synchro-
nization. We provide sufficient conditions for diffusively coupled
systems to synchronize approximately for arbitrarily small posi-
tive ultimate bounds on the synchronization error. In particular,
we show that for every chosen ultimate bound ϵ > 0 on the syn-
chronization error, there exists a (finite) diffusive coupling such
that the synchronization error is ultimately bounded by ϵ. While
(incremental) passivity is sufficient for synchronization among
identical systems and provides insight into the synchronization
problem for nonidentical systems, wewill need to impose assump-
tions, in particular the quad property, on the vector fields of the
systems. The presented result is both, constructive and analytic, as
it yields sufficient conditions on a diffusive coupling to achieve a
desired ultimate bound of the synchronization error as well as suf-
ficient conditions for approximate synchronization. The main re-
sult on practical synchronization can be applied to two concepts
that appear to be relevant on their own; first, we show that our
result applies to robust synchronization, where practical synchro-
nization can be shown for a whole class of uncertainties and sec-
ond, our result allows to investigate cluster synchronization on
general directed graphs, whereas undirected or weight-balanced
graphs are assumed in most research on synchronization.

Organization. The remainder of the paper is organized as fol-
lows; in Section 2, we specify the problem statement. In Section 3,
we review a particular result on the nominal case of our setup. We
then present our main result in Section 4. The aforementioned two
extensions of the latter are outlined in Section 5. Our findings are
illustrated on a numerical example in Section 6 and Section 7 con-
cludes the paper.

Notation. For z ∈ Rn×m, we write z =

zij

to clarify that zij de-

notes the ith element of the jth column of z. A function that maps
R × R to R is said to be of class KL, if it is zero at zero and strictly
increasing in the first argument and decreasing to zero in the sec-
ond argument. In denotes the identity of Rn×n and 1n = [1 · · · 1]⊤

is the n-fold vector of ones (or Fiedler vector). The direct product
ofmatrices (or Kronecker product) is written as⊗. Similarly,⊕ de-
notes not only the direct sum of matrices, but also the direct sum
of vector spaces (the distinction can be inferred from the context).
∅ is an empty set and kerM denotes the nullspace of thematrixM .

2. Problem statement

In this paper, we consider a collection of N systems of the form

ẋi = f (xi) + ∆i (xi) + ui + wi (1)

where i ∈ {1 · · ·N}, ∆i : Rn
→ Rn models the heterogeneity of

the systems, andwi : R̄+
→ Rn is an external signal, representing,

e.g., a perturbation. The vector fields f : Rn
→ Rn are assumed to

be known and identical for all i. Both ∆i and f are assumed to be at
least continuous and such that the solution ϕi : Rn

× (−ϵ, ϵ) →

Rn,

xi,0, t


→ ϕi


xi,0, t


to (1) exists and is unique at least on

some interval (−ϵ, ϵ). The coupling of the systems will be realized

through the control input ui. We suppose that the N systems (1)
are linearly coupled via

ui = −

N
j=1

Lijxj, (2)

where L =

Lij


∈ RN×N is the coupling matrix, to be designed
later on. For the overall system, we frequently use the ‘‘stacking’’
notation

ẋ = F (x) + ∆ (x) + u + w

= F (x) + ∆ (x) − (L ⊗ In) x + w, (3)

where∆ : RNn
→ RNn is the stack of∆i, F : RNn

→ RNn the N-fold
stack of f , u the stack of ui, and w the stack of wi. We denote the
solution to (3) by ϕ : RNn

× (−ϵ, ϵ) → RNn, (x0, t) → ϕ (x0, t)
(i.e. ϕ is the stack of ϕi and x0 is the stack of xi,0). In what follows,
we assume that L is a so-called diffusive coupling, just as it was
motivated in Section 1. This is the case when its diagonal elements
are strictly positive, its off-diagonal elements are nonpositive, and
it has a eigenvector of ones associated with a null eigenvalue.

Assumption 1. For the coupling matrix L, Lij ≤ 0 for i ≠ j and
L1N = 0 hold true.

With L chosen such that it satisfies Assumption 1, we can interpret
it as a Laplacian matrix and assign a unique weighted, directed
graph G with vertices {1 · · ·N} to it such that E = {(i, j) |i ≠

j, Lij < 0} determines its edges and −Lij is the weight on the edge
(i, j). In the remainder of this paper, when we refer to the graph
associated with L, we mean G as defined above. We are interested
in phenomena where the systems converge to the average of their
solutions s : RNn

× (−ϵ, ϵ) → Rn given by

s (x0, t) =
1
N

N
i=1

ϕi

xi,0, t


,

or at least stay close to it; i.e. to make the synchronization errors
ei : RNn

× (−ϵ, ϵ) → Rn

ei (x0, t) = ϕi

xi,0, t


− s (x0, t)

go to zero asymptotically, or to at least keep them small by means
of appropriately choosing L. The former is called synchronization.
If in the latter case, the ultimate bound for the error can be kept
arbitrarily small by a proper choice of L, this is called practical
synchronization. In the case ∆i = 0 and w = 0, synchronization
is possible. Without these assumptions, merely using diffusive
couplings (and no local controllers), only practical synchronization
is possible. In the following, in the spirit of the above stacking
notation, e will denote the stack of ei.

Definition 1. The systems (1) under coupling (2) are said to
synchronize, if for all x0 ∈ RNn ∥e (x0, t)∥ ≤ β (∥e (x0, 0)∥ , t),
where β is a class KL function.

Definition 2. The systems (1) under coupling (2) are said to be
practically synchronizable, if, for every positive choice of ϵ, there
exists L satisfying Assumption 1 such that for all x0 ∈ RNn,
∥e (x0, t)∥ ≤ β (∥e (x0, 0)∥ , t) + ϵ is satisfied, where β is a class
KL function.

As the graph associated to L is unique and vice versa, every graph
defines a unique L, the definition could equivalently read: ‘‘for
every positive choice of ϵ, there exists a directed, weighted graph’’.
For couplings satisfying Assumption 1, we can easily derive a
necessary condition for synchronization. The necessary condition
is well-known and has been investigated in particular in Zhao et al.
(2011), Wieland et al. (2013) and Bürger and De Persis (2013).
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