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The topic of this paper is optimal input signal design for identification of interconnected/networked
dynamic systems. We consider the case when it is only possible to design some of the input signals, while
the rest of the inputs are only measurable. This is most common in industrial applications, where external
excitation can only be applied to some subsystems. One example is feed-forward control from measurable
disturbances. The optimal input signal will be correlated with the measured signals. The main purpose of
this paper is to reveal how to re-formulate the input design problem for networked systems as an input
design problem for feedback control systems. We can then use the powerful partial correlation approach
for optimal closed loop input design. This means that the corresponding networked optimal input design
problem can be formulated as a semi-definite program, for which there are efficient numerical methods.
We evaluate this approach using two numerical examples with important applications. The result reveals
some non-trivial interesting properties of the optimal input signals.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

System identification is concerned with the estimation and
validation of mathematical models of dynamical systems from
experimental data. Identification has mainly been studied in a
classical open-loop or closed-loop setting with inputs, outputs and
unmeasurable disturbances. However, networks of interconnected
dynamical systems are becoming more and more important in
many fields of engineering. A networked system consists of
interconnected subsystems; see Fig. 1 for an example. A common
objective of the system identification experiment is to model one
subsystem or a part of the networked system. The structure of this
problem raises many interesting system identification questions.

The first question is how to determine the structure of the
underlying network that generated the measurements. Early work
addressing this problem can be found in Caines (1976) and Granger
(1969). Some recent work on topology identification of networked
systems can be found in Materassi and Innocenti (2010), Sanandaji,
Vincent, and Wakin (2011) and Yuan, Stan, Warnick, and Goncalves
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(2011). If the network is sparsely interconnected, regularization
ideas could be applied; see Chiuso and Pillonetto (2012) and
Seneviratne and Solo (2012).

In many applications the structure of the network is known but
the dynamics of the subsystem building up the network are not.
The classical Prediction Error Method (PEM), Ljung (1999), is often
applicable in this case. However, identifiability of the subsystems
could be an issue. For example, in a cascade of two systems where
only the output of the second system is measured, without prior
knowledge it is impossible to say which dynamic belongs to which
system. In Van den Hof, Dankers, Heuberger, and Bombois (2013)
the conditions for consistent identification of closed-loop systems
with PEM are extended to the network settings and conditions on
the interconnection structure, the presence of noise sources and
excitation signals are derived. The follow-up paper (Dankers, Van
den Hof, Bombois, & Heuberger, submitted for publication) asks
which signals must be included in the predictor model to guarantee
consistency. Even if the estimate of a model is consistent, the
quality of the identified model could be inadequate. Hence, the
next question asks what affects the quality of the identified model.
Some initial work in this is Higg, Wahlberg, and Sandberg (2011)
and Wahlberg, Hjalmarsson, and Madrtensson (2009) where the
basic building blocks of a networked system, the cascade and the
parallel are analyzed. The effects of sensor placement, input signals
and common dynamics of the subsystems on the asymptotic
properties of the identified models are discussed.

One vital question is how should one design the excitation
signal used during the experiment to obtain as much information
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Fig. 1. Example of a network of interconnected subsystems.
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Fig. 2. Considered networked system.

as possible about the subsystems in the network? Here, we will
consider the excitation design problem using the Application
Oriented Input Design framework, Hjalmarsson (2009), where
the system identification experiment is designed such that the
identified system satisfies some application requirements.

However, some special attention is required to apply this frame-
work to networked systems. For example, we need to take into
consideration that although some of the signals are measurable we
cannot excite them, something that is inherent in many industrial
applications. In this case it is possible to correlate the input with
the measured disturbances or, equivalently, feed-forward the dis-
turbance to the input. In this paper we will show how to formulate
a large class of networked input design problems in this frame-
work and how to formulate the problem as a semi-definite pro-
gram (sDP) that can be solved efficiently using numerical methods.
This paper is a generalization of the preliminary results in Higg
and Wahlberg (2013) where optimal input design for feed-forward
control was studied.

The main contributions of this paper include:

e Develop a framework for optimal input design for networked
systems, particularly for systems where some of the input
signals are measurable but cannot be designed. Furthermore we
show how to formulate the optimization problem as a semi-
definite program.

e Show how to use the framework in two simulation examples
with practical applicability which reveals some interesting
properties of the optimal input signals.

2. Networked systems

Consider a networked system in Fig. 2 on the form

y(t) = Gu(@u(t) + Gy(@u(t) + Ho(qe(t), (1)
where u(t) = [ui(t) --- uy(t)]" is the input vector, v(t) =
[vi(t) --- v(t)]is the vector of measurable or known distur-
bances, e(t) = [e1(t) --- en(t)]" the unmeasurable disturbances
and y(t) = [y1(t) Ym(H)]T are the measured outputs. The
measurement noise is assumed to be zero mean white noise with
covariance diag(Aq, ..., An) while the measurable disturbances
are modeled as stationary stochastic processes with known spec-
tral properties, i.e., v(t) can be written as v(t) = M(q)s(t), where
s(t) is a zero mean Gaussian process with covariance X. The spec-
trum of v(t) can hence be written as @, (w) = M(e/®) M (e )T,
Furthermore we assume that the disturbances are independent of
the measurement noise e(t).

For ease of notation, we will sometimes omit the time or fre-
quency argument when there is no risk of confusion.

We will now give two examples to show that systems of the
form (1) can represent a quite broad class of networked systems.
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Fig. 3. Feedback with excitation.
2.1. Networked system

The networked system in Fig. 1 can be written on the form (1)
as

(e Gy G W 0
y= [6163] + [(;1(;3 6263] vt [G3W 1] e
Here we can only design one of the inputs, namely u, while v; and
v, are given from the application. This is a common setup in many
industrial problems. The goal could be to identify the subsystems
G1(q) and Gs(q) for a subsequent control design. The question is
then how should we excite the system so that this identification is

as good as possible, taking into account the known properties and
the measurements of the disturbances v?

2.2. Reference feed-forward

Consider the feedback system in Fig. 3.

The system operates in a closed loop with a given controller F (q)
and a given reference signal r (t). For example, we want to estimate
the system G(q) to re-tune the controller F(q). During the system
identification experiment we can excite the system by u, while
still running the system in a closed loop with a given reference, so
that a minimum of production is lost during the experiment. The
objective could then be to minimize the output variance during the
experiment, i.e., to disturb the process as little as possible during
the experiment while the identified model satisfies some quality
constraints. Since the reference r(t) is known we can correlate the
input u, with r using, for example, a feed-forward controller. The
closed-loop system can be written on the form (1) as

r(t) + ! e(t). (2)
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3. System identification

The goal is to identify the dynamics of the subsystems in the
network using a Prediction Error Method (Ljung, 1999).

The model set is given by G,(q, 6), G,(q,0), H(q, 8), where
6 € R"is the model parameter vector that we want to estimate and
we assume that the true system can be described by the model with
a parameter vector denoted by 6y. Furthermore, we will assume
that the identifiability conditions in Van den Hof et al. (2013) are
satisfied so that the system is identifiable and can be consistently
identified.

The optimal one step ahead predictor of the model is given by

(6.0) = H(@.0)[Gu(@,0) Gu(a,0)] [38]

+ [I=H'(q.0)]y®);

see Ljung (1999) for details. The idea of the prediction error
method is to find an estimate of & such that the error between the
prediction and the measured data is as small as possible.

The model parameter vector estimated with a Prediction Error
Method from N data points of the inputs, measurable disturbances
and outputs is given by

N
Z y(®) = 3(0)" (v(t) —&(t))} :

éN = arg rrgn det |:
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