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a b s t r a c t

This paper is concerned with the minimum variance unbiased (MVU) finite impulse response (FIR)
filtering problem for linear system described by discrete time-variant state-space models. An MVU FIR
filter is derived by minimizing the variance from the unbiased FIR (UFIR) filter. The relationship between
the filter gains of MVU FIR, UFIR and optimal FIR (OFIR) filters is derived analytically, and themean square
errors (MSEs) of different FIR filters are compared to provide an insight into the estimation performance.
Simulations provided verify that errors in the MVU FIR filter are in between the UFIR and OFIR filters. It
is also shown that the MVU FIR filter can offer optimal estimates without a prior knowledge of the initial
state, and exhibits better robustness against temporary modeling uncertainties than the Kalman filter.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

State estimation is one of the key problems of interest in
control and signal processing. In general, the existing estimation
methods can be divided into two classes: estimators with infi-
nite impulse response (IIR) structure implying unlimited memory
and the finite impulse response (FIR) ones having limited mem-
ory. The best known IIR algorithm is inarguably the Kalman filter
(KF), which provides linear least-mean-squares estimates for lin-
ear state-space model (Gelb, 1963; Shaked & de Souza, 1995). As
it is simple, accurate and fast, KF has played a significant role in
various fields, and considerable efforts have been devoted to ex-
tending KF to suit specific practical situations. A central premise in
the KF theory is that the noise sources are white noise processes
having known statistics, and the underlying state-space model is
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known. It has also been shown that the performance of KF can
be deteriorated or even unstable in the presence of poor models.
Contrary to the IIR structures, FIR estimators utilize finite mea-
surements over the most recent time interval and have some in-
herent good engineering features such as bounded input/bounded
output (BIBO) stability, robustness against temporary model un-
certainties, and round-off errors (Shmaliy, 2010), making it com-
petitive in applications. It was concluded in Jazwinski (1970) that
the limited memory filter appears to be the only device to prevent
divergence in the system with unbounded perturbation.

In the last three decades, many successful developments of
FIR estimators have been achieved under various conditions. In
Jazwinski (1968), the maximum likelihood criterion was used to
derive a linear optimal FIR (OFIR) filter, while the FIR filters in one
and two dimensions were developed by the weighted least square
technique in Algazi, Suk, and Rim (1986). Later, the OFIR filter was
proposed for discrete time-invariant system in Kwon, Kwon, and
Lee (1989), and for continues time-varying systems in Kwon, Lee,
and Kwon (1994). Other related results can be found in the works
of Ling and Lim (1999), Liu and Liu (1994), Pei and Shyu (1996),
Wang (1991), Yuan and Stuller (1994) and Zhu, Ahmad, and Swamy
(1994). However, until 1999, when the problem was solved by
combining the receding horizon strategy with the KF Kwon, Kim,
and Park (1999), the literatures seemed to lack a systematic way of
designing the OFIR filter. To this end, the unbiased FIR (UFIR) filter
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was proposed for discrete-time system model in Kwon, Kim, and
Han (2002), and a fixed-lag FIR smoother was developed in Kwon,
Han, Kwon, and Kwon (2007), where the variance of estimation
error was minimized with the unbiased constraint. Quite recently,
a real-time UFIR filter ignoring noise statistics was derived and
realized iteratively in Shmaliy (2009) and Shmaliy (2011), and
then further extended to nonlinear systems using the linearization
technique in Shmaliy (2012). In Shmaliy (2008), the p-shift OFIR
estimator (smoother, filter and predictor) was obtained for time-
invariant state space model. For more details, one can refer to
Choi, Han, and Cioffi (2008), Shmaliy (2010), Shmaliy andManzano
(2012) and Simon and Shmaliy (2013).

Although the methods aforementioned provide different FIR-
type estimators, some well-recognized solutions such as the mini-
mumvariance unbiased (MVU) FIR filter still remain unconsidered.
In this paper, we minimize the variance of the UFIR filter provided
in Shmaliy (2011), and propose an MVU FIR filter. The remaining
part of the paper is organized as follows. In Section 2, we describe
the systems and formulate the problem. The MVU FIR filter is de-
rived in Section 3. In Section 4, we compare the MVU FIR filter
with the OFIR and UFIR filters analytically. The mean square errors
(MSEs) of the different FIR-type approaches including the proposed
method are also compared analytically. Simulations are given in
Section 5, and concluding remarks are drawn in Section 6.

The following notations are used in this paper: RK denotes
the K dimensional Euclidean space, E{·} represents the statistical
expectation, I refers to an identity matrix of proper dimensions,
tr(·) is the trace operation, and diag(a1 · · · am) denotes a diagonal
matrix with diagonal elements a1, . . . , am.

2. Problem formulation and preliminaries

Consider a linear discrete time-variant system represented by a
state space model as follows:

xn = Anxn−1 + Bnwn, (1)
yn = Cnxn + Dnvn, (2)

where n is the discrete time index, xn ∈ RK is the state vector,
yn ∈ RM is the measurement vector, An ∈ RK×K , Bn ∈ RK×P , Cn ∈

RM×K and Dn ∈ RM×M are known system matrices. The process
noise wn ∈ RP and measurement noise vn ∈ RM are mutually un-
correlatedwith zeromean, i.e., E{wn} = 0 and E{vn} = 0, and have
arbitrary distributions and known covariances.

To derive an FIR filter with the measurements collected from
m = n − N + 1 to n, where N is the estimation horizon length, we
reorganize the state and measurement equations as

Xn,m = An,mxm + Bn,mWn,m, (3)

Yn,m = Cn,mxm + Hn,mWn,m + Dn,mVn,m. (4)

Here, Xn,m =

xTn · · · xTm

T
∈ RNK×1, Yn,m =


yTn · · · yTm

T
∈ RNM×1,

Wn,m =

wT

n · · ·wT
m

T
∈ RNP×1, and Vn,m =


vTn · · · vTm

T
∈ RNM×1.

The extended model matrix An,m ∈ RNK×K , process noise matrix
Bn,m ∈ RNK×NP , observation matrix Cn,m ∈ RNM×K , auxiliary pro-
cess noise matrix Hn,m ∈ RNM×NP and measurement noise matrix
Dn,m ∈ RNM×NM are time-variant, and can be specified by, respec-
tively,

An,m =

AT

n,m+1, AT
n−1,m+1, . . . , AT

m+1,m+1, I
T

,

Bn,m =


Bn An,nBn−1 · · · An,m+1Bm
0 Bn−1 · · · An−1,m+1Bm
...

...
. . .

...
0 0 · · · Bm

 , (5)

Cn,m = C̄n,mAn,m,

Fig. 1. Operation time diagrams of the IIR and FIR structures.

Hn,m = C̄n,mBn,m,

Dn,m = diag (DnDn−1 · · ·Dm) ,

C̄n,m = diag (CnCn−1 · · · Cm) ,

with

Aj,i =

j−i
r=0

Aj−r . (6)

It shows that the equations at the starting point m on the horizon
are uniquely found with wm zero-valued. That is, the initial state
xm should be known a priori or estimated optimally. At this point,
the FIR estimate can be computed with the discrete convolution as

x̂n = KnYn,m, (7)

where x̂n
∆
= x̂n|n denotes the estimate at n utilizing the measure-

ment vector Yn,m, and Kn is the filter gain determined by a given
cost criterion. Fig. 1 demonstrates the operation principles of the
IIR and FIR structures. It shows that only onemost recentmeasure-
ment explicitly appears in IIR (Kalman) filtering, while FIR estima-
tors explicitly employ N most recent measurements. In this way,
some nice properties such as BIBO stability and better robustness
are achieved.

Provided estimate x̂n, we define the estimation error at n by
en

∆
= xn − x̂n. The problem considered is now formulated as fol-

lows: Given themodel, (1) and (2), derive a new FIR filter minimiz-
ing the variance in the UFIR filter (Shmaliy, 2011) by

K̃n = argmin
K̃n

E

eneTn


, (8)

with the unbiasedness condition E {xn} = E

x̂n


. We also wish

to provide a comparison of the UFIR, MVU FIR, and OFIR filters
(Shmaliy & Manzano, 2012).

3. Filter design

Before we give the main derivation of the MVU FIR filter, the
UFIR and OFIR filters proposed in Shmaliy (2011) and Shmaliy and
Manzano (2012) respectively are reviewed. The OFIR filter gain K̂n
is derived byminimizing the estimation error variancewithout the
unbiasedness condition, which is specified by

K̂n =

An,m+12x,mCT

n,m + B̄n,m2w,mHT
n,m


Z−1
x+w+v,m, (9)

where B̄n,m is the first row vector of Bn,m,

2x,m = E

xmxTm


,

2w,m = E

Wn,mWT

n,m


,

Zx+w+v,m = Zx,m + Zw,m + Zv,m,
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