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a b s t r a c t

In this paper, we construct a framework to describe and study the coordinated output regulation problem
for multiple heterogeneous linear systems. Each agent is modeled as a general linear multiple-input
multiple-output system with an autonomous exosystem which represents the individual offset from
the group reference for the agent. The multi-agent system as a whole has a group exogenous state
which represents the tracking reference for the whole group. Under the constraints that the group
exogenous output is only locally available to each agent and that the agents have only access to their
neighbors’ information, we propose observer-based feedback controllers to solve the coordinated output
regulation problem using output feedback information. A high-gain approach is used and the information
interactions are allowed to be switching over a finite set of networks containing both graphs that have a
directed spanning tree and graphs that do not. Simulations are shown to validate the theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Coordinated control of multi-agent systems has recently drawn
large attention due to its broad applications in physical, biological,
social, and mechanical systems (Bai, Arcak, & Wen, 2011; Chopra
& Spong, 2009; Cortes, Martinez, & Bullo, 2006; Meng, Dimarog-
onas, & Johansson, 2014; Meng et al., 2013; Tanner, Jadbabaie, &
Pappas, 2007). The key idea of a coordination algorithm is to re-
alize a global emergence using only local information interactions
(Jadbabaie, Lin, & Morse, 2003; Olfati-Saber, Fax, & Murray, 2007).
The coordination problem of a single-integrator network has been
fully studied with an emphasis on the system robustness to the in-
put time delays and switching communication topologies (Blon-
del, Hendrickx, Olshevsky, & Tsitsiklis, 2005; Jadbabaie et al., 2003;
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Olfati-Saber et al., 2007; Ren & Beard, 2005), discrete-time dynam-
ical models (Moreau, 2005; You & Xie, 2011), nonlinear couplings
(Lin, Francis, & Maggiore, 2007), convergence speed (Cao, Morse,
& Anderson, 2008), and leader–follower tracking (Shi, Hong, & Jo-
hansson, 2012). The coordination of multiple general linear dy-
namic systems has recently been studied. For example, the authors
of Wieland, Kim, and Allgöwer (2011) generalize the coordination
of multiple single-integrator systems to the case of multiple linear
time-invariant high-order systems. For a network of neutrally sta-
ble systems and polynomially unstable systems, the author of Tuna
(2009) proposes a design scheme for achieving synchronization.
The case of switching communication topologies is considered in
Scardovi and Sepulchre (2009) and a so-called consensus-based
observer is proposed to guarantee leaderless synchronization of
multiple identical linear dynamic systems under a jointly con-
nected communication topology. Similar problems are also con-
sidered in Ni and Cheng (2010) and Wang, Cheng, and Hu (2008),
where a frequently connected communication topology is studied
in Wang et al. (2008) and an assumption on the neutral stability is
imposed in Ni and Cheng (2010). The authors of Li, Duan, Chen,
and Huang (2010) propose a neighbor-based observer to solve
the synchronization problem for general linear time-invariant sys-
tems. In addition, the classical Laplacian matrix is generalized in
Yang, Roy, Wan, and Saberi (2011) to a so-called interaction ma-
trix and a D-scaling approach is used to stabilize this interaction
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matrix. Synchronization of multiple heterogeneous linear systems
has been investigated under both fixed and switching communi-
cation topologies (Alvergue, Pandey, Gu, & Chen, 2013; Grip, Yang,
Saberi, & Stoorvogel, 2012; Lunze, 2012;Wieland, Sepulchre, & All-
göwer, 2011). In Grip et al. (2012), a high-gain approach is pro-
posed to dominate the non-identical dynamics of the agents. The
cases of frequently connected and jointly connected communica-
tion topologies are studied in Kim, Shim, Back, and Seo (2013) and
Vengertsev, Kim, Shim, and Seo (2010), respectively, where a slow
switching condition and a fast switching condition are presented.
Recently, the generalizations of coordination of multiple linear dy-
namic systems to the cooperative output regulation problem are
studied in Ding (2013), Kim, Shim, and Seo (2011), Su and Huang
(2012), Wang, Hong, Huang, and Jiang (2012) and Xiang, Wei, and
Li (2009). In addition, the study on the synchronization of homo-
geneous and heterogeneous networks with nonlinear couplings is
considered in Cao, Chen, and Li (2008), Cao, Wang, and Sun (2007)
and He, Du, Qian, and Cao (2013).

In this paper, we generalize the classical output regulation
problem of a single linear system to the coordinated output reg-
ulation problem of multiple heterogeneous linear systems. We
consider the case where each agent has an individual offset
and simultaneously there is a group tracking reference. The indi-
vidual offset and the group reference are generated by autonomous
systems (i.e., systems without inputs). Each individual offset is
available to its corresponding agent while the group reference can
be obtained only through constrained communication among the
agents, i.e., the group reference trajectory is available to only a
subset of the agents. Our goal is to find an observer-based feed-
back controller for each agent such that the output of each agent
converges to a given trajectory determined by the combination of
the individual offset and the group reference. Motivated by the
approach in Grip et al. (2012), we propose a unified observer to
solve the coordinated output regulation problem of multiple het-
erogeneous general linear systems, where the open-loop poles of
the agents can be exponentially unstable and the dynamics are
allowed to be different both with respect to dimensions and pa-
rameters. This relaxes the common assumption of identical dy-
namics (Li et al., 2010; Ni & Cheng, 2010; Scardovi & Sepulchre,
2009; Su & Huang, 2012; Tuna, 2009; Vengertsev et al., 2010; Xi-
ang et al., 2009), or open-loop poles at most polynomially unstable
(Ni & Cheng, 2010; Scardovi & Sepulchre, 2009; Su & Huang, 2012;
Wieland, Sepulchre et al., 2011), or relative degree and minimum
phase requirement (Kim et al., 2011). In addition, in this work, the
information interaction is allowed to be switching from a graph set
containing both a directed spanning tree set and a disconnected
graph set. This extends the existing works considering fixed com-
munication topologies (Grip et al., 2012; Kim et al., 2011; Li et al.,
2010; Tuna, 2009; Wang et al., 2012).

The remainder of the paper is organized as follows. In Section 2,
we give some basic definitions on the network model. In Section 3,
we formulate the problem of coordinated output regulation of
multiple heterogeneous linear systems. We then propose the state
feedback control law with a unified observer design in Section 4.
Numerical studies are carried out in Section 5 to validate our design
and a brief concluding remark is drawn in Section 6.

2. Network model

We use graph theory to model the communication topology
among agents. A directed graph G consists of a pair (V, E), where
V = {ν1, ν2, . . . , νn} is a finite, nonempty set of nodes and E ⊆

V × V is a set of ordered pairs of nodes. An edge (νi, νj) denotes
that node νj can obtain information from node νi. All neighbors of
node νi are denoted as Ni := {νj|(νj, νi) ∈ E}. For an edge (νi, νj)
in a directed graph, νi is the parent node and νj is the child node.

A directed path in a directed graph is a sequence of edges of the
form (νi, νj), (νj, νk), . . . . A directed tree is a directed graph,where
every node has exactly one parent except for one node, called the
root, which has no parent, and the root has a directed path to every
other node. A directed graph has a directed spanning tree if there
exists at least one node having a directed path to all other nodes.

For a leader–follower graph G := (V, E), we have V =

{ν0, ν1, . . . , νn}, E ⊆ V × V, where ν0 is the leader and
ν1, ν2, . . . , νn denote the followers. The leader–follower adjacency
matrix A = [aij] ∈ R(n+1)×(n+1) is defined such that aij is pos-
itive if (νj, νi) ∈ E while aij = 0 otherwise. Here we assume
that aii = 0, i = 0, 1, . . . , n, and the leader has no parent, i.e.,
a0j = 0, j = 0, 1, . . . , n. The leader–follower ‘‘grounded’’ Lapla-
cian matrix L = [lij] ∈ Rn×n associated with A is defined as
lii =

n
j=0 aij and lij = −aij, where i ≠ j.

We assume that the leader–follower communication topology
Gσ(t) is time-varying and switched from a finite set {Gk}k∈Γ , where
Γ = {1, 2, . . . , δ} is an index set and δ ∈ N indicates its car-
dinality. We impose the technical condition that Gσ(t) is right
continuous, where σ : [t0, ∞) → Γ is a piecewise constant func-
tion of time, i.e., Gσ(t) remains constant for t ∈ [tℓ, tℓ+1), ℓ = 0,
1, . . . and switches at t = tℓ, ℓ = 1, 2, . . . . In addition, we assume
that infℓ(tℓ+1 − tℓ) ≥ τd > 0, ℓ = 0, 1, . . . , with limℓ→∞ tℓ = ∞,
where τd is a constant known as the dwell time (Liberzon &Morse,
1999).

Let the sets {Ak}k∈Γ and {Lk}k∈Γ be the leader–follower ad-
jacency matrices and leader–follower grounded Laplacian ma-
trices associated with {Gk}k∈Γ , respectively. Consequently, the
time-varying leader–follower adjacency matrix and time-varying
leader–follower grounded Laplacian matrix are defined as Aσ(t) =

[aij(t)] and Lσ(t) = [lij(t)].
Other notations in this paper: λmin(P) and λmax(P) denote,

respectively, the minimum and maximum eigenvalues of a real
symmetric matrix P, PT denotes the transpose of P, In denotes
the n× n identity matrix, and diag(A1, A2, . . . , An) denotes a block
diagonal matrix with the main diagonal blocks matrices. A square
matrix A is called a Hurwitz matrix if every eigenvalue of A has
strictly negative real part.

3. Problem formulation

3.1. Agent dynamics

Suppose that we have n agents modeled by the linear multiple-
input multiple-output (MIMO) systems for each νi ∈ V:
ẋi = Aixi + Biui, (1)
where xi ∈ Rni is the agent state, ui ∈ Rmi is the control input,
Ai ∈ Rni×ni , Bi ∈ Rni×mi , and ni and mi are positive integers, for all
νi ∈ V.

Also suppose that there is an individual autonomous exosystem
for each νi ∈ V:
ω̇i = Siωi, (2)
where ωi ∈ Rqi , Si ∈ Rqi×qi , and qi is a positive integer, for all
νi ∈ V.

In addition, there is a group autonomous exosystem for the
multi-agent system as a whole:

ẋ0 = A0x0, (3)
where x0 ∈ Rn0 , A0 ∈ Rn0×n0 , and n0 is a positive integer.

3.2. Available information for agents

For the individual autonomous exosystem tracking, available
output information for each agent νi ∈ V is ysi = Csixi + Cwiωi,
where ysi ∈ Rp1 , Csi ∈ Rp1×ni , Cwi ∈ Rp1×qi , and p1 is a positive
integer.
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