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a b s t r a c t

This paper addresses cooperative control problems in heterogeneous groups of linear dynamical agents
that are coupled by diffusive links. We study networks with parameter uncertainties, resulting in hetero-
geneous agent dynamics, and we analyze the robustness of their output synchronization. The networks
under consideration consist of non-identical double-integrators and harmonic oscillators. The geometric
approach to linear control theory reveals structural requirements for non-trivial output synchronization
in such networks. Furthermore, a clock synchronization problem and a circularmotion coordination prob-
lem are discussed as applications corresponding to these two network types. The results are illustrated
by numerical simulations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus and synchronization problems in networks of dy-
namical agents are typically solved with diffusive couplings, i.e.,
distributed control laws based on the output differences of neigh-
boring agents. Well-known examples are the classical consensus
protocol (Olfati-Saber & Murray, 2004; Ren & Beard, 2005) and
its extensions to double-integrators (Ren & Atkins, 2007), har-
monic oscillators (Ren, 2008), and general linear agents (Scar-
dovi & Sepulchre, 2009; Wieland, Kim, & Allgöwer, 2011). In this
context, a major challenge is robust synchronization in hetero-
geneous linear networks, i.e., multi-agent systems consisting of
non-identical linear agents (Grip, Yang, Saberi, & Stoorvogel, 2012;
Lunze, 2012; Wieland & Allgöwer, 2009; Wieland, Sepulchre, &
Allgöwer, 2011; Wu & Allgöwer, 2012). In Wieland and Allgöwer

✩ Thematerial in this paper was partially presented at the 3rd IFACWorkshop on
Distributed Estimation and Control in Networked Systems, September 14–15, 2012,
Santa Barbara, CA, USA. This paper was recommended for publication in revised
form by Associate Editor Giancarlo Ferrari-Trecate under the direction of Editor Ian
R. Petersen.

E-mail addresses: georg.seyboth@ist.uni-stuttgart.de (G.S. Seyboth),
dimos@ee.kth.se (D.V. Dimarogonas), kallej@ee.kth.se (K.H. Johansson),
p.frasca@utwente.nl (P. Frasca), allgower@ist.uni-stuttgart.de (F. Allgöwer).

(2009) andWieland, Sepulchre et al. (2011), a necessary condition
for synchronization in heterogeneous linear networks is presented.
The result is formulated as an internalmodel principle for synchro-
nization and states that the agents have to embed a common inter-
nal model in order to be able to synchronize.

In this paper, we study cooperative control problems in hetero-
geneous linear networks, i.e., in diffusively coupled multi-agent
systems with general high-order linear dynamics subject to pa-
rameter perturbations, which cause non-identical agent dynamics.
In particular, we focus on output synchronization problems. The
main goal is to develop a deeper understanding of the effects of
heterogeneity in the agent dynamics on the dynamic behavior of
the diffusively coupledmulti-agent system and its implications for
distributed control design. The contributions are the following.

We analyze the dynamic behavior of selected heterogeneous
linear multi-agent systems. For each network, we discuss the
implications of the internal model principle for synchronization,
highlight the importance of the network topology, and assess the
robustness of synchronization with respect to parameter uncer-
tainties in the agent dynamics. Firstly, we consider a network of
non-identical double-integrators, which achieves output synchro-
nization if the output is position only, in Section 4. Afterwards, in
Section 5, we study state synchronization in the same network.
The structural requirements for synchronization are notmet in this
case, but it turns out that the synchronization error remains small,
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depending on the graph topology and the heterogeneity in the net-
work. Secondly, in Section 6, we consider a network of harmonic
oscillators with perturbed frequencies. We show that the internal
model condition is not satisfied and that static diffusive couplings
have a stabilizing effect in such networks. In particular, the net-
work is rendered asymptotically stable if and only if there are oscil-
lators with different frequencies in a certain region of the network.
A preliminary version of these results has been presented in Sey-
both, Dimarogonas, Johansson, and Allgöwer (2012). Moreover, we
present two application examples: a clock synchronization prob-
lem and a motion coordination problem for mobile robots. The
latter shows that heterogeneity may significantly impair the per-
formance of cooperative control strategies designed for identical
agents.

2. Preliminaries: notation and graph theory

For a vector v ∈ Rn, diag(v) and diag(v1, . . . , vn) both denote
the diagonal matrix with the entries vi, i = 1, . . . , n, of v on the
diagonal. The all ones and all zeros vectors are denoted by 1 and 0,
respectively, and I = diag(1) is the identity matrix. The null space
and image of a linear map defined by a matrix M are denoted by
ker(M) and im(M), respectively. The norm ∥ · ∥ is understood as 2-
norm for vectors and induced 2-norm formatrices. The spectrumof
a squarematrixM is denoted byσ(M), which is to be understood as
the set of roots of the characteristic polynomial ofM , i.e., it respects
the multiplicity of the eigenvalues. For symmetric matrices M =

MT, M > 0 (M ≥ 0) stands for positive (semi-)definiteness,
while M < 0 (M ≤ 0) stands for negative (semi-)definiteness.
For a complex number z ∈ C, Re(z) is the real part and Im(z) the
imaginary part of z. The closed right-half complex plane is denoted
by C̄+. Let ẋ = Ax, x ∈ Rn, be a linear dynamical system. A subspace
U ⊆ Rn is called invariant with respect to ẋ = Ax, or shortly A-
invariant, if x(0) ∈ U implies x(t) ∈ U for all t . For convergence
to a subspace U, we write x(t) → U as t → ∞ as shorthand
notation for ∀ϵ > 0∃τ > 0∀t ≥ τ : dist(x(t), U) < ϵ, where
dist(x(t), U) = infζ∈U ∥x(t) − ζ∥.

The network topology is modeled by a time-invariant directed
graph G = (V, E, AG). Each vertex vk in the set V = {v1, . . . , vN}

corresponds to a dynamical subsystem (agent) k in the network.
There is a directed edge from vertex vj to vk, i.e., (vj, vk) ∈ E, if and
only if vk is influenced by (receives information from) vj. A con-
secutive sequence of directed edges is called a directed path. The
adjacency matrix AG ∈ RN×N describes the graph structure and
edge weights, i.e., akj > 0 ⇔ (vj, vk) ∈ E and akj = 0 other-
wise. A graph G is called undirected if (vj, vk) ∈ E ⇔ (vk, vj) ∈ E

and akj = ajk. The Laplacian matrix L ∈ RN×N is defined as
L = diag(AG1) − AG. By construction, L is a Metzler matrix and has
zero row sums, i.e., L1 = 0. The vector of ones 1 is the eigenvector
corresponding to the zero eigenvalue λ1(L) = 0. All eigenvalues of
L are contained in the closed right-half plane. The zero eigenvalue
λ1(L) = 0 is simple and all other eigenvalues have positive real
parts Re(λk(L)) > 0, k ∈ {2, . . . ,N}, if and only if G is connected
(Ren & Beard, 2005). An induced subgraph of G = (V, E) is a graph
G̃ = (Ṽ, Ẽ) with Ṽ ⊆ V and Ẽ = {(v, w) ∈ E : v, w ∈ Ṽ}.

Definition 2.1 ((Strongly) Connected Graph). A graph G is called
connected if it contains a directed spanning tree, i.e., if there exists
a vertex vk such that there is a path from vk to every other vertex
vj ∈ V. A graph G is called strongly connected if there exists a
directed path from any vertex to any other vertex in V.

Definition 2.2 (iSCC, Wieland, 2010). An independent strongly
connected component (iSCC) of a directed graph G = (V, E) is an
induced subgraph G̃ = (Ṽ, Ẽ) which is maximal, subject to being
strongly connected, and satisfies (v, ṽ) ∉ E for any v ∈ V \ Ṽ and
ṽ ∈ Ṽ.

Fig. 1. A connected directed graph G.

If G is connected, then G has exactly one iSCC (Wieland, 2010).
Furthermore, in this case, rank(L) = N−1 and the null space of LT is
spanned by a non-negative vector p ∈ RN , i.e., p ≥ 0 element-wise.
The k-th element pk is positive, if and only if vk ∈ ViSCC (Wieland,
2010). The vector p is the left eigenvector of L corresponding to
eigenvalue zero, i.e., pTL = 0T. We normalize p such that pT1 = 1.
If G is strongly connected, then ViSCC = V and p > 0 element-wise.
Fig. 1 shows an example of a directed graphwhich is connected but
not strongly connected. Its iSCC consists of ViSCC = {v1, v2, v3, v4},
and any vertex in ViSCC is the root of a spanning tree. For further
details, see Godsil and Royle (2001), Wieland (2010) and Wieland,
Kim et al. (2011).

3. Synchronization in heterogeneous linear networks

It has been shown inWieland andAllgöwer (2009) andWieland,
Sepulchre et al. (2011) that the geometric approach to linear sys-
tems theory (Basile & Marro, 1992; Wonham, 1985) is useful for
the analysis of synchronization problems in networks of linear sys-
tems. In this section, we review themain result ofWieland and All-
göwer (2009), i.e., the internalmodel principle for synchronization.
We consider a heterogeneous group of N linear agents,

ẋk = Akxk + Bkuk (1)
yk = Ckxk,

with state xk ∈ Rnk , input uk ∈ Rqk , and output yk ∈ Rp, for k ∈ N,
where N is the index set N = {1, . . . ,N}. The agents are intercon-
nected by static diffusive couplings

uk = Kk

N
j=1

akj(yj − yk), (2)

whereKk ∈ Rqk×p is a coupling gainmatrix and akj are the elements
of the adjacencymatrix AG of the underlying communication graph
G. The network of N agents (1) with couplings (2) is said to reach
output synchronization, if

yj(t) − yk(t) → 0 as t → ∞

for all pairs j, k ∈ N. Furthermore, non-trivial output synchro-
nization is reached if, additionally, the closed-loop system has no
asymptotically stable equilibrium set on which yk(t) = 0 for all
k ∈ N. We impose the following standing assumption.

Assumption 3.1. (Ak, Ck) is detectable for all k ∈ N.

The closed-loop system (1), (2) can be compactly written
as ẋ = (Â − B̂K̂(L ⊗ Ip)Ĉ)x, where x = [xT1 · · · xTN ]

T
∈ Rn̂ and

n̂ =
N

k=1 nk is the state dimension of the overall network, and
with the block diagonal matrices Â = diag(A1, . . . , AN), B̂ =

diag(B1, . . . , BN), Ĉ = diag(C1, . . . , CN), and K̂ = diag(K1, . . . , KN).
Output synchronization is reached if all solutions x(t) converge to
the synchronous subspace S ⊆ Rn̂, which is defined as the sub-
space onwhich the outputs yk = Ckxk of all agents are identical, i.e.,
S = {x ∈ Rn̂

: C1x1 = · · · = Cnxn}. The internal model principle
for synchronization is a necessary condition for non-trivial output
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