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a b s t r a c t

This paper studies the problem of output agreement in networks of nonlinear dynamical systems under
time-varying disturbances, using dynamic diffusive couplings. Necessary conditions are derived for
general networks of nonlinear systems, and these conditions are explicitly interpreted as conditions
relating the node dynamics and the network topology. For the class of incrementally passive systems,
necessary and sufficient conditions for output agreement are derived. The approach proposed in the paper
lends itself to solve flowcontrol problems in distributionnetworks. As a first case study, the internalmodel
approach is used for designing a controller that achieves an optimal routing and inventory balancing in a
dynamic transportation network with storage and time-varying supply and demand. It is in particular
shown that the time-varying optimal routing problem can be solved by applying an internal model
controller to the dual variables of a certain convex network optimization problem. As a second case study,
we show that droop-controllers in microgrids have also an interpretation as internal model controllers.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Output agreement has evolved as one of the most important
control objectives in cooperative control. It appears in various con-
texts, ranging from distributed optimization (Tsitsiklis, Bertsekas,
& Athans, 1986), formation control (Olfati-Saber, Fax, & Murray,
2007) up to oscillator synchronization (Stan & Sepulchre, 2007).
Over the past years, it has become evident that the internal model
principle takes a central role in output agreement problems, see
e.g. Bai, Arcak, and Wen (2011), De Persis (2013), De Persis and
Jayawardhana (2014),Wieland, Sepulchre, andAllgöwer (2011). In-
dependently and in parallel, it was shown that passivity and re-
lated systems theoretic concepts have outstanding relevance in
the analysis and synthesis of synchronizing networks and output
agreement problems, see e.g, Arcak (2007), Bai et al. (2011), Bürger,
Zelazo, and Allgöwer (2014), De Persis and Jayawardhana (2012),
Scardovi, Arcak, and Sontag (2010), Stan and Sepulchre (2007), van
der Schaft and Maschke (2013).

✩ Thematerial in this paperwas partially presented at the 9th IFAC Symposiumon
Nonlinear Control Systems (NOLCOS 2013), September 4–6, 2013, Toulouse, France.
This paper was recommended for publication in revised form by Associate Editor
Huijun Gao under the direction of Editor Ian R. Petersen.

E-mail addresses: mathias.buerger@ist.uni-stuttgart.de (M. Bürger),
c.de.persis@rug.nl (C. De Persis).

The present paper studies output agreement in networks of
heterogeneous nonlinear dynamical systems affected by external
disturbances and presents an approach that combines elements
from internal model control with those known in passivity-based
cooperative control. We follow here the trail opened in Pavlov
and Marconi (2008) for centralized output regulation and provide
necessary and sufficient conditions for the solution of the output
agreement problem for the class of incrementally passive systems.
Our results provide a bridge connecting the two complementary
approaches for output agreement problems, namely the internal
model approach on the one hand, and the passivity-based
approach on the other hand.

The proposed approach is inherently different from other inter-
nal model approaches such as Isidori, Marconi, and Casadei (2013),
Wieland et al. (2011), and Wieland, Wu, and Allgöwer (2013).
In Wieland et al. (2011) each node is augmented with a local con-
troller that contains a reference system, identical for all nodes, and
the local controllers track the reference system. The local (‘‘vir-
tual’’) copies of the reference system are then synchronized with
static diffusive couplings. The approach considered in the present
paper differs in central points. Most obviously, dynamic couplings,
rather than local controllers, are investigated. Furthermore, exter-
nal signals are assumed to affect the node dynamics, a case that
is not covered in Wieland et al. (2011). Incrementally passive sys-
tems and disturbance rejection are also dealt with in De Persis and
Jayawardhana (2014). However, the framework we propose here,
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inspired by Pavlov andMarconi (2008), is completely different and
leads to a family of new distinct results that have not been consid-
ered in De Persis and Jayawardhana (2014).

The main contribution of this paper is the development of a
control framework for network systems that integrates the ideas
of internal model and passivity-based cooperative control. The
proposed framework leads to both, constructive methods for the
design of distributed controllers and a novel understanding of
existing control approaches. In particular, we consider networks
of heterogeneous nonlinear systems, interacting according to
an undirected network topology. The objective is to design
dynamic controllers placed on the edges of the network such
that output agreement is achieved. Necessary conditions for the
feasibility of the problem are presented for the general case
of heterogeneous nonlinear systems with external disturbances.
Sufficient conditions for convergence to output agreement are
derived for incrementally passive systems. Following this, we
present a relevant class of heterogeneous nonlinear systems for
which all assumptions are met and the coupling controllers
can be found following a constructive design procedure. The
constructiveness of the result is further demonstrated via the
design of optimal routing controllers for distribution systems
with time-varying demand. To explain the relation to existing
approaches the special situations where output agreement can be
reached with static diffusive couplings or where the disturbances
are constant are discussed. Based on these results, it is shown
that droop-controllers in microgrids, as, e.g., studied in Simpson-
Porco, Dörfler, and Bullo (2013), are designed exactly in accordance
with the internal model control approach. Early results on the
internalmodel approach to output agreement have been presented
in Bürger and De Persis (2013).

The remainder of the paper is organized as follows. The prob-
lem formulation and necessary conditions for output agreement
are presented in Section 2. Sufficient conditions for output agree-
ment in networks of incrementally passive systems are discussed
in Section 3. A constructive procedure for the design of such con-
trollers for a class of nonlinear systems is presented in Section 4.
The design procedure is applied to a time-varying optimal distri-
bution problem in Section 5. In Section 6, the relation to known
methods in the literature is formally discussed, and an interpreta-
tion of droop-controllers as internal model controllers is provided
in Section 7.

Notation: The set of (positive) real numbers is denoted by R
(R≥). Given twomatrices A and B, the Kronecker product is denoted
by A⊗B. TheMoore–Penrose inverse (or pseudo-inverse) of a non-
invertiblematrix A is denoted by AĎ. The range-space and null-space
of a matrix B are denoted by R(B) and N (B), respectively. A graph
G = (V , E) is an object consisting of a finite set of nodes, |V | = n,
and edges, |E| = m. The incidence matrix B ∈ Rn×m of the graph
G with arbitrary orientation, is a {0,±1} matrix with [B]ik having
value ‘+1’ if node i is the initial node of edge k, ‘−1’ if it is the
terminal node, and ‘0’ otherwise.

2. Problem formulation and necessary conditions

We consider a network of dynamical systems defined on a con-
nected, undirected graph G = (V , E). Each node represents a non-
linear system

ẋi = fi(xi, ui, wi)

yi = hi(xi, wi), i = 1, 2, . . . , n,
(1)

where xi ∈ Rri is the state, and ui, yi ∈ Rp are the input and output,
respectively. Each system (1) is driven by the time-varying signal
wi ∈ Rqi , representing, e.g., a disturbance or reference. We assume
that the exogenous signalswi are generated by systems of the form

ẇi = si(wi), wi(0) ∈ Wi, (2)

where Wi is a set whose properties are specified below. A common
assumption in nonlinear output regulation theory is neutral stabil-
ity1 of the exo-systems (Isidori & Byrnes, 2008). For the purpose of
this paper, it is advantageous to restrict the discussion to a slightly
smaller class of exo-systems.

Assumption 1. The vector field si(wi) satisfies for allwi, w
′

i the in-
equality

(wi − w′

i)
T (si(wi)− si(w′

i)) ≤ 0. (3)

Remarkably, Assumption 1 includes in particular neutrally sta-
ble linear exo-systems, i.e., a linear function si(wi) = Siwi with
skew-symmetric matrix S, i.e., STi + Si = 0 satisfies the re-
quirements. These linear exosystems can generate signals that are
combinations of constant and periodic modes.

In addition, our assumption includes various nonlinear dy-
namical systems. For example, it has been shown in DeLellis, di
Bernardo, and Garofalo (2009, Sec. 4.3) that nonlinear Chua’s os-
cillators satisfy Assumption 1. We stack together the signalswi, for
i = 1, 2, . . . , n, and obtain the vector w ∈ Rq, which satisfies the
equation ẇ = s(w). In what follows, whenever we refer to the so-
lutions of ẇ = s(w), we assume that the initial condition is chosen
in a compact set W = W1 × · · · × Wn. The set W is assumed to
be forward invariant for the system ẇ = s(w). Similarly, let x, u,
and y be the stacked vectors of xi, ui, and yi, respectively. Using this
notation, the totality of all systems is

ẇ = s(w)
ẋ = f (x, u, w)
y = h(x, w)

(4)

with state spaceW ×X andX a compact subset of Rr1 ×· · ·×Rrn .
The control objective is to reach output agreement of all nodes

in the network, independent of the exact representation of the
time-varying external signals. We aim to achieve this control
objective by a suitable design of dynamic couplings between the
systems. This means, between any pair of neighboring nodes,
i.e., on any edge of G, a dynamical system (in the following called
‘‘controller’’) is placed, taking the form

ξ̇k = Fk(ξk, vk)
λk = Hk(ξk, vk), k = 1, 2, . . . ,m, (5)

with state ξk ∈ Rlk , input vk ∈ Rp and output λk ∈ Rp. Using
the same notational convention as before, we define ξ and λ as the
stacked state and output vector. Together, the controllers (5) give
raise to the overall controller

ξ̇ = F(ξ , v)
λ = H(ξ , v), (6)

where ξ ∈ Ξ , a compact subset of Rl1 × · · · × Rlm . The collection
(6) of dynamical systems (5) generates the overall output λ that
determines the control input u applied to the network system (4)
via the interconnection (9) below. This motivates the choice of
referring to the dynamical systems (5) as controllers.

Throughout the paper the following interconnection structure
between the plants, placed on the nodes of G, and the controllers,
placed on the edges of G, is considered. A controller (5), associated
with edge k connecting nodes i, j, has access to the relative outputs
yi − yj. In vector notation, the relative outputs of the systems are

z = (BT
⊗ Ip)y, (7)

1 The dynamics (2) is said to be neutrally stable if it admits a Lyapunov stable
equilibrium point for w = 0 and there exists a neighborhood of Poisson stable
points aroundw = 0.
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