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a b s t r a c t

In this paper the problem of optimal input design for model identification is studied. The optimal input
signal is designed by maximizing a scalar cost function of the information matrix, where the input signal
is a realization of a stationary process with finite memory, with its range being a finite set of values. It
is shown that the feasible set for this problem can be associated with the prime cycles in the graph of
possible values and transitions for the input signal. A realization of the optimal input signal is generated
by running a Markov chain associated with the feasible set, where the transition matrix is built using a
novel algorithm developed for de Bruijn graphs. The proposed method can be used to design inputs for
nonlinear output-error systems, which are not covered in previous results. In particular, since the input is
restricted to a finite alphabet, it can naturally handle amplitude constraints. Finally, our approach relies
on convex optimization even for systems having a nonlinear structure. A numerical example shows that
the algorithm can be successfully used to perform input design for nonlinear output-error models.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Input design considers the construction of an input signal to
maximize the information obtained from an experiment. Some of
the initial contributions in this line were presented in the works
of Cox (1958), Fedorov (1972), and Goodwin and Payne (1977),
where the latter contribution is concerned with input design for
the identification of dynamic systems. Since then, several contri-
butions in input design have been developed (see Gevers (2005),
Hildebrand and Gevers (2003), Whittle (1973), and the references
therein).

In the case of dynamic systems, input design maximizes the
information related to the estimated parameters of the system.
By maximizing a scalar function of the Fisher information ma-
trix (Ljung, 1999) related to the accuracy of the estimated model
for a particular application, we obtain an input signal that can be
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used to identify a good application model of the unknown sys-
tem. The results in this area are mainly focused on input design
for linear systems, where powerful tools can be applied to solve
the problem (Goodwin, Murdoch, & Payne, 1973; Jansson & Hjal-
marsson, 2005; Lindqvist & Hjalmarsson, 2000; Ljung, 1999; Ro-
jas, Welsh, Goodwin, & Feuer, 2007). Several methods have been
reported in the literature involving, e.g., linear matrix inequali-
ties (LMI) (Jansson & Hjalmarsson, 2005; Lindqvist & Hjalmarsson,
2000; Sanchez, Rojas, Vandersteen, Bragos, & Schoukens, 2012;
Wahlberg, Hjalmarsson, & Stoica, 2010), Markov chains (Brighenti,
2009; Brighenti, Wahlberg, & Rojas, 2009), and time domain gra-
dient based schemes (Goodwin et al., 1973; Suzuki & Sugie, 2007),
among others.

In recent years, the interest in input design has shifted from lin-
ear to nonlinear systems. Unfortunately, most of the tools used for
input design for linear systems based on frequency domain tech-
niques are no longer valid for the nonlinear case, which implies
that new techniques need to be developed in this domain. One ap-
proach to input design for the identification of nonlinear systems is
introduced in Hjalmarsson and Mårtensson (2007), where a linear
systems perspective is considered. Extensions to a class of finite-
impulse-response type systems are developed in Larsson, Hjal-
marsson, and Rojas (2010), where a characterization of probability
density functions is employed. Input design for structured nonlin-
ear identification is introduced in Vincent, Novara, Hsu, and Poola
(2009) and Vincent, Novara, Hsu, and Poolla (2010), where the
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system is assumed to be an interconnection of known linear sys-
tems and unknown static nonlinearities. An input design method
for a general class of nonlinear systems is presented in Gopaluni,
Schön, and Wills (2011), based on a particle filter used to approxi-
mate the cost function,which is optimized over a particular class of
input vectors using stochastic approximation. The methods previ-
ously mentioned (Gopaluni et al., 2011; Hjalmarsson & Mårtens-
son, 2007; Larsson et al., 2010) in general are highly complex
(usually ending up with non-convex optimization formulations,
(e.g., Gopaluni et al., 2011) and are restricted to particular model
structures (e.g., Hjalmarsson and Mårtensson (2007) and Larsson
et al. (2010)) and/or particular classes of input signals (e.g., white
noise filtered through an ARX filter, Gopaluni et al., 2011). More-
over, except for the results in Brighenti (2009), Brighenti et al.
(2009) and Larsson et al. (2010), the methods introduced cannot
handle input design with amplitude constraints. Amplitude con-
straints can arise due to power and/or physical limitations in the
system. Therefore, input designwith amplitude constraints also re-
quires further considerations.

As a first contribution, in this article we develop a novel ap-
proach for input design in nonlinear systems. This approach con-
siders the design of an input sequence for models with additive
white noise at the output, which extends the class of nonlinear sys-
tems considered in Larsson et al. (2010). The input is constrained
to be a stationary process with a finite set of possible values, and
where the associated probability mass function (pmf) has finite
memory, i.e., a Markov chain of fixed order. Therefore, the op-
timization considers the design of an optimal pmf which maxi-
mizes the information obtained from the experiment, quantified
as a scalar function of the information matrix. By using notions of
graph theory, we can express the set of feasible pmfs as a con-
vex combination of the pmfs of the prime cycles describing the
vertices of the set. Since the prime cycles can be explicitly com-
puted by known algorithms (Johnson, 1975; Zaman, 1983), the
optimization problem becomes easy to pose. Furthermore, for
standard choices of the cost function, the problem is convex even
for nonlinear systems, which simplifies the problem formulation
discussed in Brighenti (2009) and Brighenti et al. (2009). Finally,
since the input is restricted to a finite set of possible values, the
method naturally incorporates amplitude limitations.

Once the optimization problem is solved, we obtain the opti-
mal stationary distribution over the possible states of the memory
describing the pmf. To obtain an input with the desired stationary
distribution, we must be able to design a feasible transition proba-
bilitymatrix satisfying the constraints of the graph associatedwith
our problem. Unfortunately, due to the asymmetric structure of the
graph, we cannot use standardMarkov chain Monte Carlo (MCMC)
methods (Boyd, Diaconis, & Xiao, 2004; Hastings, 1970) to deter-
mine a transition matrix for the graph. Therefore, and as a second
contribution of this paper, we develop a method to design a valid
transition probability matrix for graphs generated from stationary
processes with finite memory.

The present article can be seen as an extension of the results
in Brighenti (2009), Brighenti et al. (2009) and Larsson et al. (2010).
The main difference with Brighenti (2009) and Brighenti et al.
(2009) is that we optimize over the stationary pmf associated with
theMarkov chain, instead of directly optimizing over the transition
probabilities. This approach results in a convex problem (which
cannot be achieved in Brighenti (2009) and Brighenti et al. (2009),
where optimization techniques guaranteeing local optimamust be
employed). In Larsson et al. (2010) a similar approach to the one
presented in our article is discussed, but restricted to the analysis
to nonlinear FIR systems. By using the finite memory property of
nonlinear FIR models, the input design problem in Larsson et al.
(2010) is solved in terms of an input realization of finite length.
However, the results in Larsson et al. (2010) cannot be employed to

design input sequences for identification ofmore general nonlinear
output-error models, since the models will generally depend on
the entire past input sequence. In this line, our article extends
the analysis to more general nonlinear model structures, which
includes nonlinear FIR systems (see Example 1 inValenzuela, Rojas,
and Hjalmarsson (2013) where the results are consistent with
those introduced in Larsson et al. (2010)).

As with most optimal input design methods, the one proposed
in this contribution relies on knowledge of the true system. This
difficulty can be overcome by implementing a robust experiment
design scheme on top of it (Rojas et al., 2007) or via an adaptive
procedure, where the input signal is re-designed as more informa-
tion is being collected from the system (Gerencsér, Hjalmarsson, &
Mårtensson, 2009; Rojas, Hjalmarsson, Gerencsér, & Mårtensson,
2011). This issue goes beyond the scope of this article and it will
not be addressed here.

A previous description of the proposed method has been
presented in Valenzuela et al. (2013). In this paper we give a more
detailed explanation of the input design technique, amethod of the
generation of the input signal from an optimal finite state Markov
chain stationary distribution, and new numerical examples.

The rest of the paper is organized as follows. Section 2 intro-
duces some background on graph theory. Section 3 presents the in-
put design problem. In Section 4we solve the input design problem
using elements of graph theory. Section 5 presents a novel method
to generate an input signal from the optimal stationary distribution
obtained in Section 4. Section 6 illustrates the results with numer-
ical examples. Finally, Section 7 presents conclusions.

Notation. In the sequel, we denote by C the complex set, by Z the
integer set, by R the real set, by Rp the set of real p-dimensional
vectors, and by Rr×s the set of real r × s matrices. Given z ∈ C,
|z| denotes its modulus. The expected value with respect to the
random variable x and the probability measure are denoted by
Ex{·}, and P{·}, respectively. det and tr stand for the determinant
and the trace functions, respectively. Given a finite set T , #T
denotes its cardinality.

2. Preliminaries on graph theory

In this sectionwe provide a brief background on the concepts of
graph theory used in the next sections. Our notation follows that
of Johnson (1975, pp. 77).

A directed graph GV = (V,X) consists of a nonempty and
finite set of vertices (or nodes) V and a set X of ordered pairs of
distinct vertices called edges. A path in GV is a sequence of vertices
pvu = (v = v1, v2, . . . , vk = u) such that (vi, vi+1) ∈ X for
all i ∈ {1, . . . , k − 1}. A cycle is a path in which the first and last
vertices are identical. A cycle is elementary if no vertex but the first
and last appears twice. Two elementary cycles are distinct if one is
not a cyclic permutation of the other.

An n-dimensional de Bruijn graph of m symbols (de Bruijn &
Erdos, 1946) is a directed graph representing overlaps between
sequences of symbols (cf. Fig. 2). It hasmn vertices, consisting of all
possible sequences of length n derived from the given symbols. The
same symbol can appear multiple times in a sequence. If we have
a set of symbols C = {s1, . . . , sm} then the set of n-dimensional
vertices is

V = Cn
= {(s1, . . . , s1, s1), (s1, . . . , s1, s2), . . . ,

(s1, . . . , s1, sm), (s1, . . . , s2, s1), . . . ,
(sm, . . . , sm, sm)}. (1)

If one of the vertices can be expressed as another vertex by shifting
all its symbols one place to the left and adding a new symbol at the
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