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a b s t r a c t

In the design of networked control systems, one must take account of communication constraints in the
form of data rate. In this paper, we consider a quantized control problem for stabilizing uncertain linear
systems in the sense of quadratic stability. For a class of finite-order (possibly time-varying) uncertain
autoregressive plants, we show that the coarsest quantizer for achieving quadratic stabilization is of
logarithmic type. In particular, for a given quadratic Lyapunov function, the largest coarseness is derived
in an analytic form. The result explicitly shows that plants with more uncertainties require more precise
information in the quantized signals to achieve quadratic stabilization. We also provide a numerical
method based on a linear matrix inequality to search for a Lyapunov function along with a quantizer
of a given level of coarseness.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of networked control systems, issues related to
quantizationhave recently been studied extensively. Such research
is motivated by the fact that in networked systems, analog signals
must be quantized into digital ones to be transferred over networks
in the form of packets. The quantization process certainly intro-
duces some loss in data, and thus a fundamental interest lies in
finding howmuch information is necessary for the purpose of feed-
back control. For stabilization of linear systems, limitations in the
communication of control signals have been found under several
problem formulations including the well-known minimum data
rate theorem (see, e.g., Bemporad, Heemels, & Johansson, 2010;
Matveev & Savkin, 2008; Nair, Fagnani, Zampieri, & Evans, 2007
and the references therein).

Thework of Elia andMitter (2001) initiated a line of research on
characterizing the coarseness in quantization in networked con-
trol when static (deterministic) quantizers are employed. Such
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quantizers are useful in applications for their simplicity in im-
plementation. In particular, the work exhibited that for achiev-
ing quadratic stability of the closed-loop system, the so-called
logarithmic quantizers are the coarsest. Such quantizers have an
interesting property that quantization is fine around the origin, but
becomes coarser as the input becomes larger. This seems a reason-
able structure for the objective of controlling the states to the ori-
gin. Moreover, the coarseness has a limitation depending on the
plant properties and specifically on the unstable poles. This indi-
cates that more unstable systems require finer quantization.

This problem setting has further been studied by various re-
searchers. In Fu and Xie (2005) and Gao and Chen (2008), con-
trol performance such as quadratic costs and the H∞ norm is
considered while Tsumura, Ishii, and Hoshina (2009) extend the
coarsest quantization results to the random packet loss scenario.
Sampled-data control strategies are developed in Ishii and Francis
(2002) and Ishii, Başar, and Tempo (2004), where quadratic stabil-
ity is guaranteed in the continuous-time domain. In Ceragioli and
De Persis (2007) and Liu, Jiang, and Hill (2012), nonlinear control
problems with the use of logarithmic type quantizers are ad-
dressed. The works Chen and Qiu (2013) and Qiu, Gu, and Wan
(2013) derive limitations for resource allocation in the multiple
channel case.

On the other hand, in the area of quantized control, the effect
of plant uncertainty has also received some attention. For data-
rate limited control, in Phat, Jiang, Savkin, and Petersen (2004), a
sufficient condition on the data rate to attain quantized feedback
stabilization has been developed. The paper by Vu and Liberzon
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Fig. 1. Networked control system.

(2012) examines the use of a switching control scheme which de-
termines the suitable controller by estimating the plant parame-
ters at the time. Also, the work of Martins, Dahleh, and Elia (2006)
studies the stabilization of a stochastically time-varying system.
For control with coarse quantization, thework of Fu and Xie (2010)
considers robust control problems for both static and dynamic
logarithmic quantizers. Adaptive control strategies can also be
found in Hayakawa, Ishii, and Tsumura (2009), where the knowl-
edge of the bound on uncertainties is not needed.

More recently, in Okano and Ishii (in press), the minimum data
rate is obtained for a class of finite-order uncertain autoregressive
plants. It is expressed by the unstable poles of the nominal plant
and a bound on an uncertain parameter. An interesting implication
there is that an optimal nonuniform quantizer can be designed for
reducing the necessary communication.

In this paper, we study the stabilization problem for a similar
class of uncertain linear systems. Based on the approach of Elia and
Mitter (2001), our goal is to characterize the coarsest quantization
scheme for such systems. The strategy here is (i) to fix the desired
quadratic Lyapunov function suitable for closed-loop stability
when there is no network effect, and (ii) then to find the controller
structure as well as the limitation on the quantization coarseness
under the given Lyapunov function.

We provide an analytic solution to this problem, which
generalizes those for plantswithout uncertainties. In particular,we
clarify how the level of uncertainty affects the tolerable coarseness
in quantization. It will be observed that for more uncertain
systems, finer quantization is required for stabilization. We will
also demonstrate that unlike the non-uncertain case of Elia and
Mitter (2001), it is difficult to find the coarsest quantizer in a closed
form over all quadratic Lyapunov functions. The results are first
developed for the special case of global asymptotic stability with
infinite output values in quantization.We also provide a numerical
method based on a linear matrix inequality (LMI) that searches
for a Lyapunov function along with a quantizer of a given level of
coarseness. It can be used to find the coarsest quantizer over all
quadratic Lyapunov functions.

This paper is organized as follows. In Section 2, we formulate
the quantized control problem for uncertain networked systems.
In Section 3,we discuss the coarsest quantizer for a given Lyapunov
function and provide the main result. In Section 4, we derive local
stability results using finite quantizers. A numerical example is
presented in Section 5 to illustrate the proposed approach. Finally,
concluding remarks are given in Section 6. This paper is based on
the earlier version (Kang & Ishii, 2013), but contains the full proofs
with enhanced results.

2. Problem formulation

In this section, we formulate the quantized control problem
studied in this paper.

Consider the networked control system depicted in Fig. 1. We
first describe the system setup briefly. The plant G is a single-input
single-output discrete-time linear system and has uncertain pa-
rameters. The control signal uk ∈ R is generated by the controller
formed by the encoder E and the decoder D. Between them, the

discrete signal ik is sent over the network. In the channel, we as-
sume that there is no network latency and the data rate is high
enough to transfer all the data within the sampling period. To sim-
plify the problem, we initially assume that the word length is infi-
nite. That is, the quantized signal takes discrete values which may
form an infinite set. In Section 4, we will discuss the more realistic
case with a finite number of values.

The plant G is an n-dimensional autoregressive system with
possibly time-varying uncertain parameters as

yk+1 = a1,kyk + a2,kyk−1 + · · · + an,kyk−n+1 + uk, (1)

where uk ∈ R is the input and yk ∈ R is the output. The parame-
ters ai,k are uncertain and take the form

ai,k = a∗

i + ∆i,k, i = 1, . . . , n, k ∈ Z+,

where a∗

i is the nominal part and∆i,k is the uncertain part. Let∆k ∈

R1×n be the uncertainty vector given by ∆k :=

∆n,k ∆n−1,k · · ·

∆1,k

. For a given δ ∈ [0, 1), the uncertainty is bounded as

∥∆k∥ ≤ δ, ∀k ∈ Z+. (2)

The uncertain plant (1) can be expressed in the controllable
canonical form as

xk+1 = A(∆k)xk + buk, yk = cxk, (3)

where xk := [yk−n+1 yk−n+2 · · · yk]T ∈ Rn is the state, and
the system matrices A(∆k) ∈ Rn×n, b ∈ Rn, and c ∈ R1×n are
given by

A(∆k) :=


0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1

an,k an−1,k · · · a1,k

 ,

b :=


0
...
0
1

 , c := bT .

We denote the nominal A-matrix by A∗
:= A(0).

The encoder E maps the output yk to the discrete signal ik ∈

Z, and more specifically, it is a static function of the state xk as
ik = E(yk, yk−1, . . . , yk−n+1) = E(xk). The decoder D generates the
control input taking discrete values {ũi}i∈Z based on the current ik
as uk = D(ik) = ũik . The maps E and D are assumed to be static,
and thus we may write the overall controller as

uk = K(xk), (4)

where K : Rn
→ {ũi}i∈Z is called the quantized controller, or sim-

ply the quantizer.
In our networked control problem, the objective is to achieve

stabilization of the closed-loop system. In particular, wewould like
to guarantee quadratic stability as defined below.

Definition 1. The uncertain networked control system in Fig. 1
is quadratically stable if there exists a positive-definite function
V (x) := xTPx with P > 0 such that each trajectory {xk} of the
closed-loop system satisfies

V (xk+1) − V (xk) < 0, if xk ≠ 0, k ∈ Z+. (5)

For the quantized controller K , we employ the notion of coarse-
ness introduced in Elia and Mitter (2001) given by

dK := lim
ϵ→0

sup
♯u[ϵ]
− ln ϵ

, (6)
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