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a b s t r a c t

A finite-horizon optimal estimation problem for discrete-time linear systems is formulated and solved.
The formulation is a natural extension of that which yields a deadbeat observer. The resultant observer is
the dual of the controller produced by the finite-horizonminimum energy control problemwith terminal
equality constraint. Nonlinear extensions of this dual pair are also considered and sufficient conditions
are provided for stability and convergence.
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1. Introduction

One of the earliest things that students of control theory are
taught is that for linear systems controllability and observability
are dual concepts. Very few doubt this because it is in every lin-
ear systems textbook. Interestingly, what is usually not in all those
books is a clear definition of duality (Luenberger, 1992). A possi-
bility is that no one wants to confine the notion into the precision
required by a definition. Or, perhaps, it is too obvious a thing to de-
fine. Eitherway, people do not seem to need its exact description in
order tomake use of or enjoy duality; for once a dual pair emerges,
the human eye is very quick to recognize it.

An intriguing example of duality is between the problems of
linear quadratic regulation (LQR) and linear quadratic estimation
(LQE, Kalman–Bucy filter). These celebrated optimization prob-
lems, which are very different conceptually and formulation-wise,
yield sets of parameters (matrices) that are associated via formal
rules that transform one set to another Kalman (1960).2 The prob-

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Dragan Nesic
under the direction of Editor Andrew R. Teel.

E-mail address: tuna@eee.metu.edu.tr.
1 Tel.: +90 312 210 2368; fax: +90 312 210 2304.
2 Though LQR and LQE are acknowledged as a dual pair, nowhere (to the best of

our knowledge) it is mentioned whether duality played much (if any) role in their
discoveries. In other words, there seems to be no evidence to suggest that the birth
of LQE was a consequence of the pressing fact that LQR must have a twin.

lems of linear deadbeat control and linear deadbeat estimation
make another example of a dual pair. Let us recall the former. Con-
sider the below systems, both nth order,

xk+1 = Axk (1)

x̂k+1 = Ax̂k + Buk (2)

where the system (2) is to track the system (1) by choosing suitable
control inputs u0, u1, . . .. (Let us assume for now that the control-
lability condition is satisfied, input u is scalar, and the full state in-
formation (x̂, x) of both systems is available to the controller.) To
turn the system (2) into a deadbeat tracker for the system (1), i.e., to
achieve x̂k = xk (for arbitrary initial conditions x̂0, x0) for k ≥ n,
one can follow the belowmethod, which, although stated for linear
systems, is equally meaningful for nonlinear systems.

Algorithm 1. Apply uk from the sequence of inputs (uk, uk+1, . . . ,
uk+n−1) obtained by solving x̂k+n = Anxk.

If we now move to the dual problem, linear deadbeat estima-
tion, how to translate Algorithm 1 is not immediately clear. Moti-
vated by the historical pattern that beautiful things tend to come
in dual pairs for linear systems, our work here starts with a search
for this missing twin of Algorithm 1. In more exact terms, guided
by linear duality, we look for some sort of a principle that not only
leads to linear deadbeat observer but also is useful for the nonlin-
ear deadbeat observer design. This search is nothing but a simple
linear algebra exercise, but its outcome turns out to have some in-
teresting consequences that go beyond linear and deadbeat. Those
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consequences are what we report in this paper. In particular, three
things are done.

First, in Theorem 4 observer design for linear systems is for-
mulated as a finite-horizon optimization problem. The formu-
lation concerns a moving-horizon type observer (whose order
matches that of the system being observed) where at each time
an estimate of the system state is generated based solely on the
current output (instead of a larger collection of data comprising
previous measurements) of the system and the current observer
state. Convergence is guaranteed for all horizon lengths no smaller
than the observability index of the system being observed. Inter-
estingly, the formulation presented here turns out to be the dual of
a classic result (Theorem 5) by Kleinman (1974), who is acknowl-
edged to be the first to consider moving-horizon feedback (Keerthi
& Gilbert, 1988). Note that our formulation is in discrete-time. The
continuous-time formulation is due to Thomas (1975).

Second, in Theorem 9 a nonlinear generalization of the linear
optimal observer construction of Theorem 4 is provided, where
convergence is established under certain conditions inspired by
those that hold in the linear problem. The resulting nonlinear
moving-horizon observer, like its above-mentioned linear version,
is driven only by the current output value of the system being
observed. This constitutes an apparent conceptual difference
between the construction in this paper and the existing work
on moving-horizon estimation, the basic philosophy of which is
summarized in Ferrari-Trecate, Mignone, and Morari (2002) as:
the estimates of the states are obtained by solving a least squares
problem, which penalizes the deviation between measurements
and predicted outputs of a system. The data considered for the
optimization is laying in a window of fixed finite length, which slides
forward in time. Namely, at each time k the formulation presented
here only requires the most recent (single) measurement yk to
run the optimization problem, whereas the literature, to the
best of our knowledge, has so far only reported results, where
the optimization is performed processing a collection of recent
measurements (yk−N+1, . . . , yk−1, yk), where N is no smaller than
the observability index. See, for instance, Alessandri, Baglietto,
and Battistelli (2008, 2012), Psiaki (2013) and Rao, Rawlings, and
Mayne (2003).

Third, for the sake of symmetry we present in Theorem 12
a possible nonlinear extension of Kleinman’s optimal controller
(Theorem 5). More specifically, a moving-horizon optimal tracking
problem is considered, where convergence is established mainly
through terminal equality constraint. Though widely-used, termi-
nal equality constraint is not indispensable and other means to
achieve convergence have long existed in the receding horizon
control literature.What has been indispensable for asymptotic sta-
bility however is some sort of detectability assumption3 on the
stage cost (Grimm, Messina, Tuna, & Teel, 2005; Limon, Alamo,
Salas, & Camacho, 2006; Mayne, Rawlings, Rao, & Scokaert, 2000;
Reble & Allgower, 2012). We note that in the very first (and linear)
result on moving-horizon feedback (Kleinman, 1970), where the
stage cost is a quadratic function solely of the control input, this
assumption is violated. The novelty of the formulation in this pa-
per is that we do not assume detectability from the stage cost nor
that detectability is implied by our assumptions. We hence intend
to provide a proper generalization of Kleinman (1974).

2. Notation

N denotes the set of nonnegative integers and R≥0 the set of
nonnegative real numbers. For amapping f : X → X let f 0(x) = x
and f k+1(x) = f (f k(x)). The Euclidean norm in Rn is denoted by

3 It is true that recentworks on economicmodel predictive control (Angeli, Amrit,
& Rawlings, 2012; Grüne, 2013) shed this assumption, yet convergence in those
works is still established through a rotated stage cost from which the state of the
system is detectable thanks to some strict dissipativity assumption.

∥·∥. For a symmetric positive definitematrixQ ∈ Rn×n the smallest
and largest eigenvalues of Q are respectively denoted by λmin(Q )
and λmax(Q ). Also, ∥x∥2

Q = xTQx. A function α : R≥0 → R≥0 is said
to belong to class-K∞(α ∈ K∞) if it is continuous, zero at zero,
strictly increasing, and unbounded.

3. An optimal observer

We begin this section by an attempt to obtain the dual of
Algorithm 1, i.e., some method to construct the deadbeat ob-
server, which is meaningful also for nonlinear systems. Consider
the discrete-time linear system

x+
= Ax, y = Cx (3)

where x ∈ Rn is the state, y ∈ Rm is the output, and x+ is the state
at the next time instant. The matrices A and C belong to Rn×n and
Rm×n, respectively. We will denote by xk (for k ∈ N) the solution
of the system (3) starting from the initial condition x0. Driven by
the output y of the system (3) and having started from the initial
condition z0, suppose that the below system, for N ≥ 1,

z+
= Aη(z, y) (4)

produces at each time k an estimate zk of xk−N+1 (the N − 1 steps
earlier value of the current state x) based on zk−1 and yk−1. That is,
the vector η ∈ Rn is a function of the state z and the output y. Note
that the system (4) can be used in the following observer

z+
= Aη, x̂ = AN−1z (5)

where x̂ is the estimate of the current state x. Assuming for now
that the system (3) is observable and its output y is scalar, we ask
the following question. How should η be chosen such that the sys-
tem (5) is a deadbeat observer for the system (3), i.e., x̂k = xk for
k ≥ n regardless of the initial conditions z0, x0?

To answer the question we recall the deadbeat tracker, the
dual of deadbeat observer. From Algorithm 1 it follows that the
dynamics of the deadbeat tracker read x̂+

= Ax̂+BK(x−x̂)with the
feedback gain K = eTnC

−1An where C = [B AB · · · An−1B]is
the controllability matrix and en = [0 · · · 0 1]T . By duality
the dynamics of the deadbeat observer should read

x̂+
= Ax̂ + L(y − Cx̂) (6)

with the observer gain

L = AnO−1en (7)

where O = [CT ATCT
· · · A(n−1)TCT

]
T is the observability

matrix. Now, combining (5), (6), and (7) we can write

ANη = AN−1z+
= x̂+

= Ax̂ + AnO−1en(y − Cx̂)
= ANz + AnO−1en(y − CAN−1z).

If we let N = nwe can write

Anη = An(z + O−1en(y − CAn−1z))

which suggests that we choose η as

η = z + O−1en(y − CAn−1z). (8)

Eq. (8) is not directly generalizable to nonlinear systems so we
rewrite it as the following set of equations

CAiη = CAiz for i = 0, 1, . . . ,N − 2
CAN−1η = y


(9)

keeping in mind that N = n. Therefore, to turn the system (5) (for
N = n) into a deadbeat observer for the system (3) with scalar
output one can use the below algorithm.
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