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a b s t r a c t

Adaptive dynamic programming has been investigated and used as a method to approximately solve
optimal regulation problems. However, the extension of this technique to optimal tracking problems for
continuous-time nonlinear systems has remained a non-trivial open problem. The control development
in this paper guarantees ultimately bounded tracking of a desired trajectory, while also ensuring that the
enacted controller approximates the optimal controller.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) is a concept that can be used to en-
able an agent to learn optimal policies from interaction with the
environment. The objective of the agent is to learn the policy that
maximizes or minimizes a cumulative long term reward. Almost
all RL algorithms use some form of generalized policy iteration
(GPI). GPI is a set of two simultaneous interacting processes, pol-
icy evaluation and policy improvement. Starting with an estimate
of the state value function and an admissible policy, policy eval-
uation makes the estimate consistent with the policy and policy
improvement makes the policy greedy with respect to the value
function. These algorithms exploit the fact that the optimal value
function satisfies Bellman’s principle of optimality (Kirk, 2004; Sut-
ton & Barto, 1998).
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When applied to continuous-time systems the principle of
optimality leads to the Hamilton–Jacobi–Bellman (HJB) equation
which is the continuous-time counterpart of the Bellman equa-
tion (Doya, 2000). Similar to discrete-time adaptive dynamic pro-
gramming (ADP), continuous-time ADP approaches aim at finding
approximate solutions to the HJB equation. Various methods to
solve this problem are proposed in Abu-Khalaf and Lewis (2002),
Beard, Saridis, andWen (1997), Bhasin et al. (2013), Jiang and Jiang
(2012), Vamvoudakis and Lewis (2010), Vrabie and Lewis (2009)
and Zhang, Luo, and Liu (2009) and the references therein. An in-
finite horizon regulation problem with a quadratic cost function is
the most common problem considered in ADP literature. For these
problems, function approximation techniques can be used to ap-
proximate the value function because it is time-invariant.

Approximation techniques like neural networks (NNs) are com-
monly used in ADP literature for value function approximation.
ADP-based approaches are presented in results such as (Dierks &
Jagannathan, 2010; Zhang, Cui, Zhang, & Luo, 2011) to address the
tracking problem for continuous-time systems, where the value
function, and the controller presented are time-varying functions
of the tracking error. However, for the infinite horizon optimal con-
trol problem, time does not lie on a compact set, and NNs can only
approximate functions on a compact domain. Thus, it is unclear
how a NN with the tracking error as an input can approximate the
time-varying value function and controller.

For discrete-time systems, several approaches have been de-
veloped to address the tracking problem. Park, Choi, and Lee
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(1996) use generalized back-propagation through time to solve a
finite horizon tracking problem that involves offline training of
NNs. An ADP-based approach is presented in Dierks and Jagan-
nathan (2009) to solve an infinite horizon optimal tracking prob-
lem where the desired trajectory is assumed to depend on the
system states. Greedy heuristic dynamic programming based algo-
rithms are presented in results such as (Luo & Liang, 2011; Wang,
Liu, & Wei, 2012; Zhang, Wei, & Luo, 2008) which transform the
nonautonomous system into an autonomous system, and approx-
imate convergence of the sequence of value functions to the opti-
mal value function is established. However, these results lack an
accompanying stability analysis.

In this result, the tracking error and the desired trajectory both
serve as inputs to the NN. This makes the developed controller
fundamentally different from previous results, in the sense that
a different HJB equation must be solved and its solution, i.e. the
feedback component of the controller, is a time-varying function
of the tracking error. In particular, this paper addresses the techni-
cal obstacles that result from the time-varying nature of the opti-
mal control problemby including the partial derivative of the value
function with respect to the desired trajectory in the HJB equation,
and by using a system transformation to convert the problem into
a time-invariant optimal control problem in such a way that the
resulting value function is a time-invariant function of the trans-
formed states, and hence, lends itself to approximation using a NN.
A Lyapunov-based analysis is used to prove ultimately bounded
tracking and that the enacted controller approximates the optimal
controller. Simulation results are presented to demonstrate the ap-
plicability of the presented technique. To gauge the performance of
the proposed method, a comparison with a numerical optimal so-
lution is presented.

For notational brevity, unless otherwise specified, the domain
of all the functions is assumed to be R≥0. Furthermore, time-
dependence is suppressed while denoting trajectories of dynami-
cal systems. For example, the trajectory x : R≥0 → Rn is defined by
abuse of notation as x ∈ Rn, and referred to as x instead of x (t), and
unless otherwise specified, an equation of the form f + h (y, t) =

g (x) is interpreted as f (t)+h (y (t) , t) = g (x (t)) for all t ∈ R≥0.

2. Formulation of time-invariant optimal control problem

Consider a class of nonlinear control affine systems

ẋ = f (x)+ g (x) u,

where x ∈ Rn is the state, and u ∈ Rm is the control input. The func-
tions f : Rn

→ Rn and g : Rn
→ Rn×m are locally Lipschitz and

f (0) = 0. The control objective is to track a bounded continuously
differentiable signal xd ∈ Rn. To quantify this objective, a tracking
error is defined as e , x−xd. The open-loop tracking error dynam-
ics can then be expressed as

ė = f (x)+ g (x) u − ẋd. (1)

The following assumptions are made to facilitate the formulation
of an approximate optimal tracking controller.

Assumption 1. The function g is bounded, thematrix g (x) has full
column rank for all x ∈ Rn, and the function g+

: Rn
→ Rm×n

defined as g+ ,

gTg

−1 gT is bounded and locally Lipschitz.

Assumption 2. The desired trajectory is bounded such that ∥xd∥ ≤

d ∈ R, and there exists a locally Lipschitz function hd : Rn
→

Rn such that ẋd = hd (xd) and g (xd) g+ (xd) (hd (xd)− f (xd)) =

hd (xd)− f (xd) , ∀t ∈ R≥t0 .

The steady-state control policy ud : Rn
→ Rm corresponding to

the desired trajectory xd is

ud (xd) = g+

d (hd (xd)− fd) , (2)

where g+

d , g+ (xd) and fd , f (xd). To transform the time-vary-
ing optimal control problem into a time-invariant optimal control
problem, a new concatenated state ζ ∈ R2n is defined as (Zhang
et al., 2008)

ζ ,

eT , xTd

T
. (3)

Based on (1) and Assumption 2, the time derivative of (3) can be
expressed as

ζ̇ = F (ζ )+ G (ζ ) µ, (4)

where the functions F : R2n
→ R2n, G : R2n

→ R2n×m, and the
control µ ∈ Rm are defined as

F (ζ ) ,


f (e + xd)− hd (xd)+ g (e + xd) ud (xd)

hd (xd)


,

G (ζ ) ,


g (e + xd)

0


, µ , u − ud. (5)

Local Lipschitz continuity of f and g , the fact that f (0) = 0, and
Assumption 2 imply that F (0) = 0 and F is locally Lipschitz.

The objective of the optimal control problem is to design a pol-
icy µ∗

: R2n
→ Rm

∈ Ψ such that the control law µ = µ∗ (ζ )
minimizes the cost functional

J (ζ , µ) ,


∞

0
r (ζ (ρ) , µ (ρ)) dρ,

subject to the dynamic constraints in (4), where Ψ is the set of ad-
missible policies (Beard et al., 1997), and r : R2n

× Rm
→ R≥0 is

the local cost defined as

r (ζ , µ) , ζ TQ ζ + µTRµ. (6)

In (6), R ∈ Rm×m is a positive definite symmetric matrix of con-
stants, and Q ∈ R2n×2n is defined as

Q ,


Q 0n×n

0n×n 0n×n


, (7)

where Q ∈ Rn×n is a positive definite symmetric matrix of con-
stants with the minimum eigenvalue q ∈ R>0, and 0n×n ∈ Rn×n is
a matrix of zeros. For brevity of notation, let (·)′ denote ∂ (·) /∂ζ .

3. Approximate optimal solution

Assuming that a minimizing policy exists and that the optimal
value function V ∗

: R2n
→ R≥0 defined as

V ∗ (ζ ) , min
µ(τ)|τ∈R≥t

∞
t

r (φµ (τ ; t, ζ ) , µ (τ)) dτ (8)

is continuously differentiable, the HJB equation for the optimal
control problem can be written as

H∗
= V ∗′ (ζ )


F (ζ )+ G (ζ ) µ∗ (ζ )


+ r


ζ , µ∗ (ζ )


= 0, (9)

for all ζ , with the boundary condition V ∗ (0) = 0, where H∗ de-
notes the Hamiltonian, and µ∗

: R2n
→ Rm denotes the optimal

policy. In (8) φµ (τ ; t, ζ ) denotes the trajectory of (4) under the
controller µ starting at initial time t and initial state ζ . For the lo-
cal cost in (6) and the dynamics in (4), the optimal policy can be
obtained in closed-form as (Kirk, 2004)

µ∗ (ζ ) = −
1
2
R−1GT (ζ )


V ∗′ (ζ )

T
. (10)



Download English Version:

https://daneshyari.com/en/article/7110043

Download Persian Version:

https://daneshyari.com/article/7110043

Daneshyari.com

https://daneshyari.com/en/article/7110043
https://daneshyari.com/article/7110043
https://daneshyari.com

