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a b s t r a c t

This work offers the solution at the control feed-back level of the accurate trajectory tracking subject to
finite-time convergence. Dynamic equations of a rigid robotic manipulator are assumed to be uncertain.
Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the
trajectory. Based on the suitably defined non-singular terminal sliding vector variable and the Lyapunov
stability theory, we propose a class of absolutely continuous robust controllers which seem to be effective
in counteracting both uncertain dynamics and unbounded disturbances. The numerical simulation results
carried out for a robotic manipulator consisting of two revolute kinematic pairs operating in a two-
dimensional joint space illustrate performance of the proposed controllers.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Present-day robotic tasks require high precision and stability of
their performance. Trajectory tracking seems to be a fundamen-
tal task in robot control. In order to fulfil aforementioned require-
ments, control algorithms should take into account the following
factors: model uncertainties, parameter variations and external
disturbances. However, they are, in fact, never known exactly in
practice. Therefore, it is particularly important to design control
algorithms that ensure accurate and fast convergence to the stable
equilibrium when trajectory tracking despite the existence of the
aforementioned factors. In such a context, several control schemes
for asymptotic tracking of manipulator trajectories can be found
in the literature (Corless, 1993; Galicki, 2008, 2012; Hsu & Fu,
2006; Slotine & Li, 1991; Utkin, 1978; Zhang, Dawson, de Queiroz,
& Dixon, 2000) which partially or fully take into account these
factors. Sliding-mode control seems to be one of the most effec-
tive approaches to cope with uncertainties. As is well known, slid-
ing mode is accurate and insensitive to disturbances (Edwards &
Spurgeon, 1998; Utkin, 1992). However, the main drawback of the
standard first-order sliding modes is mostly related to the unde-
sirable chattering effect (Fridman, 2002). The second- and higher-
order sliding techniques to eliminate the chattering have been
proposed (Bartolini, Ferrara, & Punta, 2000; Bartolini, Ferrara, Usai,
& Utkin, 2000; Bartolini, Pisano, Punta, & Usai, 2003; Bartolini &
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Pydynowski, 1996; Ferrara & Capisani, 2011; Levant, 1998, 2003,
2005, 2011; Levant & Michael, 2009; Mondal & Mahanta, 2014;
Shtessel, Shkolnikov, & Brown, 2003; Sira-Ramírez, 1992). Never-
theless, the approaches from Bartolini, Ferrara, Punta (2000), Bar-
tolini, Ferrara, Usai et al. (2000), Bartolini et al. (2003), Bartolini
and Pydynowski (1996), Ferrara and Capisani (2011), Mondal and
Mahanta (2014), Shtessel et al. (2003) and Sira-Ramírez (1992) are
able to steer a tracking error to zero asymptotically and those from
Levant (1998, 2003, 2005, 2011) and Levant and Michael (2009)
are only applicable to single input dynamic systems. In order to
both increase tracking accuracy and accelerate a convergence pro-
cess to the stable equilibrium, terminal slidingmode (TSM) control
techniques have been offered as a particularly useful tool for high
precision control of robotic manipulators. In such a context,
several approaches can be distinguished (Hong, Xu, & Huang,
2002; Su, 2009; Su & Zheng, 2011) that produce (non-smooth)
continuous controls but require the full knowledge of robot
dynamic equations. By using the regressor matrix technique,
adaptive-discontinuous TSM controllers have been designed in
works Barambones and Etxebarria (2002), Parra-Vega, Rodrigues-
Angeles, and Hirzinger (2001) and Tang (1998). An alternative ter-
minal sliding manifold has been proposed in Feng, Yu, and Man
(2002), Jin, Lee, Chang, and Choi (2009) and Yu, Yu, Shirinzadeh,
and Man (2005) to eliminate the singularity problem. Neverthe-
less, the common feature of the approaches from Feng et al. (2002),
Jin et al. (2009) and Yu et al. (2005) is necessity of knowledge
of the nominal robot dynamic equations whose construction may
not be a trivial task. Recently, a robust discontinuous TSM con-
trol for robotic manipulators has been proposed in Zhao, Li, and
Gao (2009). A similar approach with a singularity problem has
also been presented in Man, Paplinski, and Wu (1994). From the
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literature survey, it follows that all the aforementioned algorithms
are not able to generate continuous controls resulting in finite-time
stability of the equilibrium when both dynamic equations are un-
certain and (unbounded) disturbances act on the robotic manip-
ulators. Hence, there is a need to provide additional information
(including the joint position and velocity or its estimation) for a
control scheme to be designed further on. From the robotic point
of view, joint acceleration is such additional quantity. In general,
there are two approaches for the joint acceleration acquisition. The
first is based on the direct measurement of joint acceleration (De
Luca, Schroder, & Thummel, 2007; Godler, Akahane, Maruyama, &
Yamashita, 1995). The second approach uses a class of uniform ro-
bust differentiators (Levant, 2003; Levant & Livne, 2012). Based
on the available joint acceleration or its estimation, a new non-
singular TSM manifold is introduced in this study. The proposed
TSM manifold makes it possible to simultaneously join the first-
order sliding mode approach possessing the finite-time control
capabilities with the second-order sliding mode techniques gen-
erating the (absolutely) continuous controls. It is worth to em-
phasise that the finite-time control of robotic manipulators
subject to uncertain dynamic equations, absolute continuity con-
trol requirement and globally unbounded disturbances, is still a
non-trivial problem whose solution is based in this work on intro-
ducing a dynamic version of a static computed torque approach
presented in e.g. works Siciliano, Sciavicco, Villani, and Oriolo
(2009) and Spong and Vidyasagar (1989). The remainder of the pa-
per is organised as follows. Section 2 formulates the finite-time
trajectory tracking task. Section 3 sets up a class of robust abso-
lutely continuous controllers solving the trajectory tracking task
in a finite-time subject to uncertain robot dynamic equations and
unbounded disturbances. Section 4 presents computer examples of
trajectory tracking by a robotic manipulator consisting of two rev-
olute kinematic pairs. Finally, some concluding remarks are drawn
in Section 5. Throughout this paper, λmin(·) and λmax(·) denote the
minimal and maximal, respectively, eigenvalues of the symmetric
matrix (·). Moreover, the real branch of x

a
b , where x ∈ R; a, b are

positive odd numbers, and a < b < 2a, is taken here into account.

2. Problem formulation

The dynamics of a rigid robotic manipulator of n-DoF is given
by the following general equations (Spong & Vidyasagar, 1989):

M(q)q̈ + H(q, q̇) + G(q) + D(t, q, q̇) = v, (1)

where q = (q1, . . . , qn)T , q̇ and q̈ represent the position, velocity
and acceleration, respectively. The n × n inertia matrix M(q) is
positive definite and symmetric. The term H in (1) equals H =

B(q)(q̇ · q̇) + C(q)(q̇2), where B and C are the n ×
n(n−1)

2 and
n × n matrices of coefficients of the Coriolis and centrifugal
forces, respectively. Quantities (q̇ · q̇) and (q̇2) are the symbolic
notations for the n(n−1)

2 -dimensional and n-dimensional vectors (q̇·
q̇) = (q̇1q̇2, . . . , q̇n−1q̇n)T and (q̇2) = (q̇21, . . . , q̇

2
n)

T , respectively.
Term v = (v1, . . . , vn)

T stands for the n-dimensional vector of
controls (torques/forces). Term G(q) is the n-dimensional vector
of generalised gravity forces. Vector D(t, q, q̇) means the n-
dimensional external disturbance signal which is (by assumption)
at least absolutely continuous mapping with Ḋ(t, q, q̇) as being
a locally bounded Lebesgue measurable mapping (this implies
existence of control v).Moreover,∥D∥ and∥Ḋ∥ are (by assumption)
upper estimated as follows

∥D∥ ≤ α0(t), ∥Ḋ∥ ≤ α1(t), (2)

where α0, α1 stand for the known, non-negative functions. In the
sequel, useful properties of (1) are summarised which will be

utilised while designing the controller. The following inequalities
are satisfied (Spong & Vidyasagar, 1989):

0 < λmin(M−1) ≤ ∥M−1
∥ ≤ λmax(M−1),

∥B + C∥ ≤ c1, ∥G∥ ≤ c2,
(3)

where c1, c2 are known positive scalar coefficients. In order to
obtain at least absolutely continuous control v, let us differentiate
the dynamic equations (1) with respect to time

M(q)
d3q
dt3

+ F(q, q̇, q̈, t) = v̇, (4)

where F = Ṁq̈+Ḃ(q̇·q̇)+Ċ(q̇2)+B d
dt (q̇·q̇)+C d

dt (q̇
2)+Ġ+Ḋ. Based

on the properties of (1), one obtains the following upper estimation
of ∥F∥:

∥F∥ ≤ E(q, q̇, q̈, t), (5)

whereE = c3∥q̇∥∥q̈∥+c4∥q̇∥3
+c5∥q̇∥+α1(t); c3, c4, c5 are (known

by assumption) positive scalar coefficients for which the following
inequalities hold true: ∥ ∂M

∂q ∥+∥B∥+∥C∥ ≤ c3; ∥
∂C
∂q ∥ ≤ c4; ∥

∂G
∂q ∥ ≤

c5. Motivated in part by the static computed torque methodology
(Siciliano et al., 2009; Spong & Vidyasagar, 1989), we propose now
a dynamically computed torque vector v̇ of the form

v̇ = M̂(q)u + F̂(q, q̇, q̈, t), (6)

where M̂ and F̂ denote known estimates of the corresponding
unknown terms M and F , respectively, in dynamic equations (4);
u ∈ Rn is a new control to be found. The use of (6) as a dynamic
non-linear control law gives M d3q

dt3
+ F = M̂u + F̂ = v̇. Since M is

invertible, we obtain

d3q
dt3

= u + (R − In)u + Q , (7)

where R = M−1M̂;Q = M−1(F̂ − F); In stands for the n × n
identity matrix. A task accomplished by the robotic manipulator
consists in tracking a desired trajectory qd(t) ∈ Rn, t ∈ [0, ∞)
which is assumed to be at least triply continuously differentiable,
i.e., qd(·) ∈ C3

[0, ∞). By introducing the tracking error e =

(e1, . . . , en)T = q−qd(t), wemay formally express the finite-time
trajectory tracking control by means of the following equations:

lim
t→T

e(t) = lim
t→T

ė(t) = lim
t→T

ë(t) = 0, (8)

where 0 ≤ T denotes a finite time of convergence of q to qd.
The objective is to find an input signal u(t) and consequently a
control vector v(t) by solving the differential equations (6) such
that position vector q follows qd. The next section will present an
approach to the solution of the control problem (6)–(8)making use
of the Lyapunov stability theory.

3. Control of the robotic manipulator

In the sequel, we start the analysis of a controller design by
the assumption that joint positions, velocities and accelerations are
available frommeasurements. Let us note that the right-hand side
of (7) requires the knowledge of joint acceleration q̈. Recently, a lot
of techniques appeared in the literature which directly measure q̈
(De Luca et al., 2007; Godler et al., 1995). Based on (3), we canmake
the following remark:

(∃M̂ > 0)(∃ρ > 0)(∥R − In∥ ≤ ρ < 1). (9)

Let us note that it is not difficult to find matrix M̂ fulfilling
relations (9). If we set M̂ =

2
λmin(M−1)+λmax(M−1)

In (see e.g. Spong &

Vidyasagar, 1989) thenρ =
λmax(M−1)−λmin(M−1)
λmax(M−1)+λmin(M−1)

satisfies inequality
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