
Automatica 51 (2015) 123–130

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Robust prognosability for a set of partially observed discrete
event systems✩

Shigemasa Takai 1
Division of Electrical, Electronic and Information Engineering, Osaka University, Suita, Osaka 565-0871, Japan

a r t i c l e i n f o

Article history:
Received 14 May 2013
Received in revised form
13 September 2014
Accepted 29 September 2014

Keywords:
Discrete event system
Failure prognosis
Robust prognosability
Robust prognoser

a b s t r a c t

In this paper,we consider a robust failure prognosis problem for partially observed discrete event systems.
Given a set of possible models, each of which has its own nonfailure specification, we consider a single
prognoser such that, for all possible models, it predicts any failure prior to its occurrence. We call such a
prognoser a robust prognoser. We introduce a notion of robust prognosability and show that it serves as a
necessary and sufficient condition for the existence of a robust prognoser. We then present a method
for verifying the robust prognosability condition. Moreover, we discuss online synthesis of a robust
prognoser.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, failure prognosis of discrete event systems (DESs) has
received considerable attention. Prognosis of a failure is important
to perform corrective actions for the occurrence of an impending
failure. In Genc and Lafortune (2009), a problem of predicting the
occurrence of a significant event such as a failure eventwas formu-
lated for partially observed DESs. A notion of predictability intro-
duced in Genc and Lafortune (2009)means that, for any impending
significant event, it is unambiguously known that it occurs within
a uniformly bounded number of steps. A polynomial algorithmwas
developed to verify predictability in Genc and Lafortune (2009).
The notion of predictabilitywas extended to predict the occurrence
of a certain sequence pattern in Jéron, Marchand, Genc, and Lafor-
tune (2007).

A notion of indicator strings was introduced to capture in-
evitability of a future failure in the setting of temporal logic (Jiang
& Kumar, 2004). A nonfailure string is said to be an indicator string
if a failure is guaranteed to occur in future. Using the notion of indi-
cator strings, a decentralized failure prognosis problem was stud-
ied in Kumar and Takai (2010), where a nonfailure specification

✩ This work was supported in part by Grant-in-Aid for Scientific Research
(No. 24560547). The material in this paper was partially presented at the 2012
American Control Conference (ACC2012), June 27–29, 2012, Montreal, Canada. This
paper was recommended for publication in revised form by Associate Editor Jan
Komenda under the direction of Editor Ian R. Petersen.

E-mail address: takai@eei.eng.osaka-u.ac.jp.
1 Tel.: +81 6 6879 7693; fax: +81 6 6879 7263.

language is specified, and a failure is modeled by violation of the
specification language. A notion of prognosability was introduced
to characterize the class of systems such that inevitability of any
failure is detected (Kumar & Takai, 2010). A polynomial algorithm
was presented to verify prognosability in Kumar and Takai (2010).
The results of Kumar and Takai (2010)were extended to inference-
based prognosis (Takai & Kumar, 2011), prognosis in a general de-
centralized architecture (Khoumsi & Chakib, 2012), and distributed
prognosis under bounded delay communications (Takai & Kumar,
2012). Failure prognosis was also studied in the stochastic setting
in Chen and Kumar (2014).

Model uncertainty is one of the important issues in model-
based approaches to DESs (Kwong & Yonge-Mallo, 2011; Lin, 1993;
Young & Garg, 1995). Young and Garg (1995) considered a case
where a set of possible models, which includes the exact model
of a system, is given, and developed an algorithm to determine
the exact model from the set of possible models. If the exact
model cannot be determined, thenwe need a scheme that does not
require the resolution of the model uncertainty. In the context of
supervisory control of DESs (Ramadge &Wonham, 1987), a robust
supervisory control problem was formulated in Lin (1993). This
problem requires us to synthesize a single supervisor that achieves
the legal behavior for all possible models. The result of Lin (1993)
was extended in several ways in Bourdon, Lawford, and Wonham
(2005), Saboori and Hashtrudi Zad (2006) and Takai (2000). In
addition, a robust failure diagnosis problem was considered in
Carvalho, Moreira, and Basilio (2011) and Takai (2012a). The
objective of the robust failure diagnosis problem is to synthesize
a single diagnoser such that, for all possible models, it detects the

http://dx.doi.org/10.1016/j.automatica.2014.10.104
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.10.104
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.10.104&domain=pdf
mailto:takai@eei.eng.osaka-u.ac.jp
http://dx.doi.org/10.1016/j.automatica.2014.10.104

124 S. Takai / Automatica 51 (2015) 123–130

occurrence of any failure within a uniformly bounded number of
steps.

Prior works on failure prognosis mentioned above assume that
a single model of a system to be prognosed is given. In this pa-
per, we assume as in Bourdon et al. (2005), Saboori and Hashtrudi
Zad (2006) and Takai (2012a) that a set of possible models, each
of which has its own nonfailure specification, is given and con-
sider a robust failure prognosis problem. We first introduce a
notion of prognosability, called robust prognosability, for a set of
possible models with respect to a set of nonfailure specification
languages and compare it with the existing notion of prognosabil-
ity. Then, we show that robust prognosability is a necessary and
sufficient condition for the existence of a single prognoser such
that, for all possible models, it detects inevitability of any fail-
ure. Such a prognoser is called a robust prognoser. Furthermore, we
present methods for verifying the robust prognosability condition
and synthesizing a robust prognoser as an online prognoser.

The robust prognosis problem is different from the decentral-
ized/distributed prognosis problems considered in Khoumsi and
Chakib (2012), Kumar and Takai (2010) and Takai and Kumar
(2011, 2012). In the setting of robust prognosis, a single prog-
noser prognoses multiple models, whereas multiple prognosers
prognose a single model in the setting of decentralized/distributed
prognosis.

Kwong and Yonge-Mallo (2011) studied failure diagnosis us-
ing incomplete DES models. They assumed that the given nominal
model is missing some transitions that exist in the system to be
diagnosed and proposed learning diagnosers to deal with the exis-
tence of such missed transitions. In this paper, we consider a dif-
ferent type of model uncertainty and take the different approach.

This paper is an extended version of Takai (2012b). It gener-
alizes the results of Takai (2012b) by allowing the existence of
deadlocking states and contains technical proofs omitted in Takai
(2012b) and some additional results. It is shown that the compu-
tational complexity for verifying robust prognosability can be re-
duced under the assumption that there is no deadlocking state.

2. Preliminaries

Weconsider a DESmodeled as an automatonG = (Q , Σ, f , q0),
where Q is the set of states, Σ is the finite set of events, f :

Q × Σ → Q is the partial state transition function, and q0 ∈ Q
is the initial state. Let Σ∗ be the set of all finite strings of elements
of Σ , including the empty string ε. The state transition function
f : Q × Σ → Q can be generalized to f : Q × Σ∗

→ Q in the
usualmanner. The notation f (q, s)!means that f (q, s) is defined for
q ∈ Q and s ∈ Σ∗. In addition, ¬f (q, s)! denotes the negation of
f (q, s)!. The generated language of G, denoted by L(G), is defined as
L(G) = {s ∈ Σ∗

| f (q0, s)!}. Furthermore, the set of deadlocking
strings is defined as Ld(G) = {s ∈ L(G) | {s}Σ ∩ L(G) = ∅}.

For each s ∈ Σ∗, |s|denotes its length. (Note that, for a finite set
A, |A| denotes the number of its elements.) The set of all prefixes of
s is denoted by pr(s). Let K ⊆ Σ∗ be a language. The set of all pre-
fixes of strings in K is defined as pr(K) =


s∈K pr(s) = {t ∈ Σ∗

|

∃u ∈ Σ∗
: tu ∈ K}. If K = pr(K), K is said to be (prefix-)closed.

The postlanguage ofK after s is defined asK/s = {t ∈ Σ∗
| st ∈ K}.

3. Failure prognosis

A prognoser for G observes the occurrence of an event through
the observation mask M : Σ → ∆ ∪ {ε}, where ∆ is the set of
symbols observed by a prognoser. An event σ ∈ Σ withM(σ) = ε
is unobservable to a prognoser. The observation mask M : Σ →

∆ ∪ {ε} is extended to M : Σ∗
→ ∆∗ in the usual manner.

Strings s, s′ ∈ Σ∗ are said to be indistinguishable (under M) if
M(s) = M(s′). For any language K ⊆ Σ∗, M(K) ⊆ ∆∗ is defined

as M(K) = {M(s) ∈ ∆∗
|s ∈ K}. In addition, for any τ ∈ ∆∗ and

any K ′
⊆ ∆∗, M−1(τ) ⊆ Σ∗ and M−1(K ′) ⊆ Σ∗ are defined as

M−1(τ) = {s ∈ Σ∗
|M(s) = τ } and M−1(K ′) = {s ∈ Σ∗

|M(s) ∈

K ′
}, respectively.
A prognoser is formally defined as a function P : ∆∗

→ {0, 1}.
If P is certain that a failure is guaranteed to occur in future, then
it issues the decision ‘‘1’’. Otherwise, the decision ‘‘0’’ is issued by
P . Let K ⊆ L(G) be a nonempty closed sublanguage that describes
the nonfailure behavior of the system G. The fault behavior of G is
represented by L(G)−K . The notions of boundary strings (forwhich
a failure can occur in a next step), indicator strings (for which a
failure in future is guaranteed), and nonindicator strings (that are
not indicator strings) are defined as follows.

Definition 1 (Kumar & Takai, 2010). For any closed language K ⊆

L(G),
• the set ∂L(G)(K) of boundary strings of K with respect to L(G) is

defined as

∂L(G)(K) = {s ∈ K | {s}Σ ∩ (L(G) − K) ≠ ∅};

• the set ℑL(G)(K) of indicator strings of K with respect to L(G) is
defined as

ℑL(G)(K) = {s ∈ K | ∃m ∈ N , ∀t ∈ L(G)/s :

[|t| ≥ m ∨ st ∈ Ld(G)] ⇒ st ∈ L(G) − K};

• the setΥL(G)(K) of nonindicator strings of K with respect to L(G)
is defined as

ΥL(G)(K) = K − ℑL(G)(K).

Remark 2. In Definition 1, the definition of ℑL(G)(K) of Kumar and
Takai (2010) is extended in the presence of deadlocking strings.

It follows from the definition of indicator strings that any
nonfailure extension of an indicator string is also an indicator
string. That is, the following lemma,whichwill be used later, holds.

Lemma 3. Let K ⊆ L(G) be a nonempty closed language. For any
s ∈ K , if s ∈ ℑL(G)(K), then {s}Σ∗

∩ K ⊆ ℑL(G)(K).

A prognoser P : ∆∗
→ {0, 1} is required to satisfy the follow-

ing condition:
(C1) ∀s ∈ L(G) − K , ∃t ∈ pr(s) ∩ K : P (M(t)) = 1.

The condition (C1) means that the occurrence of any failure is
predicted prior to its occurrence. In addition,P is required to issue
the decision ‘‘1’’ only if a failure is guaranteed to occur in future.
That is, P should also satisfy the following condition:
(C2) ∀s ∈ ΥL(G)(K) : P (M(s)) ≠ 1.

The following definition of prognosability of G was introduced
in Kumar and Takai (2010).

Definition 4 (Kumar & Takai, 2010). The system G is said to be
prognosablewith respect to a nonempty closed language K ⊆ L(G)
if

∀s ∈ L(G) − K , ∃t ∈ pr(s) ∩ K : M−1M(t) ∩ K ⊆ ℑL(G)(K).

As shown in the following proposition, G is prognosable if and
only if each boundary string in ∂L(G)(K) can be distinguished from
any nonindicator string in ΥL(G)(K).

Proposition 5 (Kumar & Takai, 2010). The system G is prognosable
with respect to a nonempty closed language K ⊆ L(G) if and only if
∂L(G)(K) ∩ M−1M(ΥL(G)(K)) = ∅.

Given a nonempty closed language K ⊆ L(G), there exists a
prognoser P : ∆∗

→ {0, 1} that satisfies (C1) and (C2) if and only
if G is prognosable with respect to K (Kumar & Takai, 2010).

Download English Version:

https://daneshyari.com/en/article/7110057

Download Persian Version:

https://daneshyari.com/article/7110057

Daneshyari.com

https://daneshyari.com/en/article/7110057
https://daneshyari.com/article/7110057
https://daneshyari.com

