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a b s t r a c t

The main contribution of this paper is the dimensionality reduction for multiple-step 2D point feature
based Simultaneous Localization and Mapping (SLAM), which is an extension of our previous work on
one-step SLAM (Wang et al., 2013). It has been proved that SLAMwithmultiple robot poses and a number
of point feature positions as variables is equivalent to an optimization problem with only the robot
orientations as variables, when the associated uncertainties can be described using spherical covariance
matrices. This reduces the dimension of original problem from 3m+2n tom only (wherem is the number
of poses and n is the number of features). The optimization problem after dimensionality reduction can
be solved numerically using the unconstrained optimization algorithms. While dimensionality reduction
may not provide computational saving for all nonlinear optimization problems, for some SLAM problems
we can achieve benefits such as improvement on time consumption and convergence. For the special case
of two-step SLAM when the orientation information from odometry is not incorporated, an algorithm
that can guarantee to obtain the globally optimal solution (in the maximum likelihood sense) is derived.
Simulation and experimental datasets are used to verify the equivalence between the reduced nonlinear
optimization problem and the original full optimization problem, as well as the proposed new algorithm
for obtaining the globally optimal solution for two-step SLAM.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For more than 15 years, Simultaneous Localization and Map-
ping (SLAM) has been a key problem in robotics (Bailey & Durrant-
Whyte, 2006). As a result, many algorithms have been proposed
to solve SLAM in various forms. In the state-of-the-art approaches,
under the assumption of (independent) Gaussian noise, the SLAM

✩ This work has been supported in part by the Funds of National Science of
China (Grant Nos. 61004061, 61210306067), Australian Research Council Discovery
project (DP120102786), and the German Research Foundation (DFG) under grant
SFB/TR 8 Spatial Cognition. The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
Associate Editor Andrey V. Savkin under the direction of Editor Ian R. Petersen.

E-mail addresses:wang-h@i2r.a-star.edu.sg (H. Wang),
Shoudong.Huang@uts.edu.au (S. Huang), Kasra.Khosoussi@uts.edu.au
(K. Khosoussi), udo.frese@dfki.de (U. Frese), Gamini.Dissanayake@uts.edu.au
(G. Dissanayake), bliu@i2r.a-star.edu.sg (B. Liu).
1 Tel.: +65 64082790; fax: +65 67761378.

problem is formulated as a sparse non-linear least squares (NLLS)
problem over m robot poses and n features’ positions (3m + 2n
variables in 2D) (Dellaert & Kaess, 2006). Newton-based itera-
tive solvers such as Gauss–Newton and Levenberg–Marquardt are
among the most popular algorithms for solving this NLLS. The
sparseness of this NLLS is a consequence of (i) conditional inde-
pendence of features given the robot poses, (ii) limited range of
sensors, and finally (iii) uncorrelated measurement noise. Exploit-
ing this inherent property of SLAM problems is a key characteris-
tic of many of the modern solvers (Huang, Wang, & Dissanayake,
2008; Kaess et al., 2012; Kummerle, Grisetti, Strasdat, Konolige, &
Burgard, 2011).

It is now well-known that the SLAM problem becomes consid-
erably easier to analyse when the noise covariance matrices are
spherical (Wang, Huang, Frese, & Dissanayake, 2013). In Huang,
Lai, Frese, and Dissanayake (2010), the authors reported an un-
expected convergence of vanilla Gauss–Newton algorithm to the
optimal solution from random initial guesses in high-dimensional
SLAM problems when the noise covariance matrices are spherical.
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Similarly, in the tree-based network optimizer (TORO) (Grisetti,
Stachniss, Grzonka, & Burgard, 2007), good convergence results
from bad initial values are reported for large pose-graphs when
the noise covariancematrices are spherical. More recently, Carlone
(Carlone, 2013) addressed the convergence of Gauss–Newton al-
gorithm in pose-graph SLAM. Under the assumption of spherical
noise covariance matrices, a conservative estimate for the basin
of attraction of the ML estimate in pose-graph SLAM was derived.
In Huang, Wang, Frese, and Dissanayake (2012) and Wang, Hu,
Huang, and Dissanayake (2012); Wang et al. (2013), authors stud-
ied the ML objective function in ‘‘one-step SLAM’’ when the noise
covariance matrices are spherical. They show that minimizing the
ML objective function (in one-step SLAM) can be reduced to a
one-dimensional optimization problem over the robot orientation.
Furthermore, it is shown that the reduced problem has a unique
minimizer unless the noise is extremely large.

In this paper we extend the results of Huang et al. (2012)
and Wang et al. (2012, 2013) along two directions: (i) we show
that the ML estimate in general (m-step) feature-based SLAM
problems can be obtained by solving a NLLS problem over only m
variables (i.e., the robot orientations in m poses), in particular, the
structure of the problem is closely related to the incidence matrix
of the directed graph of the SLAM problem, and (ii) based on this
result, we develop an algorithm that can be guaranteed to find the
globally optimal solution to the 2-step SLAMwhen the orientation
information in odometry is not used.

This paper is organized as follows. In Section 2, theML estimate
in SLAM is formulated as the solution to a NLLS problem. Section 3
introduces the definition of sphericalmatrices and derives an alter-
native SLAM formulation when covariance matrices are spherical.
In Section 4, it is shown that the m-step (m ≥ 2) SLAM problem is
equivalent to another NLLS over only the robot orientations. In Sec-
tion 5, we show that the globally optimal solution to a special case
of two-step SLAM problem can be obtained by finding the roots of
a polynomial with degree 6. In Section 6, examples are presented
to illustrate the benefits of dimensionality reduction. Finally Sec-
tion 7 concludes the paper.

Notation. Throughout the paper, ⊗ denotes the Kronecker prod-
uct, superscript T and −1 stand for, respectively, the transposition
and the inverse of a matrix; C ≻ D means that matrix C − D is
positive definite; I and In denote the identity matrix with compat-
ible dimension and dimension n, 0 represents the zeromatrix with
compatible dimension, and ∥e∥2

C = eTCe, where C ≻ 0 and e is a
vector. wrap(·) is the function that maps an angle to its equivalent
angle in (−π, π]. The symbol diag(C1, . . . , Cn) denotes a block-
diagonal matrix whose diagonal blocks are C1, . . . , Cn.

2. Problem formulation

Suppose n 2D point features {fi}ni=1 are observed from a se-
quence ofm+1 2D robot poses {ri}mi=0. We use Z i

k to denote the ob-
servation made from pose ri to feature fk. We use Oi (1 ≤ i ≤ m) to
denote the odometry measurement between pose ri−1 and pose ri.
Both the odometry and observations are corrupted by zero-mean
Gaussian noises with covariance matrices PZ ik and POi , respectively.

Xfk = (xfk , yfk)
T denotes the position of feature fk. Xri = (xri , yri)

T

denotes the position of robot pose ri while φri denotes the orienta-
tion of robot pose ri. The coordinate frame is defined by the robot
pose r0. That is, Xr0 = (0, 0)T and φr0 = 0. R(φri) is the rotation
matrix corresponding to φri defined by:

R(φri) ,


cosφri − sinφri
sinφri cosφri


. (1)

The non-linear least squares (NLLS) SLAM formulation (Dellaert &
Kaess, 2006) uses the odometry and observation information to

estimate the state vector containing all the robot poses and all the
feature positions

X , (XT
f1 , . . . , X

T
fn , X

T
r1 , φr1 , . . . , X

T
rm , φrm)T (2)

and minimizes the negative log-likelihood function

F(X) =

m
i=0

ni
j=1

∥Z i
kij − H

Z ikij (X)∥2
P−1
Zikij

+

m
i=1

∥Oi − HOi(X)∥2
P−1
Oi

(3)

whereOi (1 ≤ i ≤ m) are odometries, Z i
kij
are observations (assume

ni features are observed from robot pose ri and kij is the global in-
dex of the jth feature observed from pose ri), and POi and PZ ikij

are

the corresponding covariance matrices.
In the above least squares SLAM formulation,HZ ik(X) andHOi(X)

are the corresponding functions relating Z i
k andOi to the state X . An

odometry measurement is a function of two poses (XT
ri−1

, φri−1)
T

and (XT
ri , φri)

T and is given by

HOi(X) =


R(φri−1)

T (Xri − Xri−1)
wrap(φri − φri−1)


. (4)

A single observation is a function of one pose (XT
ri , φri)

T and one
feature position Xfk which is given by

HZ ik(X) = R(φri)
T (Xfk − Xri). (5)

In particular, since φr0 = 0 and Xr0 = (0, 0)T , the odometry
function from robot r0 to r1 is given by

HO1(X) =


Xr1
φr1


(6)

and the observation function from robot r0 to fk is given by

HZ0k (X) = Xfk . (7)

3. Alternative formulationwhencovariancematrices are spher-
ical

The NLLS in (3) can be simplified whenmatrices PZ ikij
and POi are

spherical for every i and j.

3.1. Definition of spherical matrices

We first state the definitions of spherical matrices which were
defined in Wang et al. (2013).

Definition 1. A ∈ R2×2 is called spherical if it commutes with
R(φ) (defined in (1)) for every φ. i.e. AR(φ) = R(φ)A for every φ.
B ∈ R3×3 is called spherical if it has the format of B = diag(A, a)
where A ∈ R2×2 is spherical and a is a real number.

Remark 1. Every positive definite spherical matrix A ∈ R2×2 can
bewritten as A = a2I2 for some a ≠ 0. Furthermore, for every pos-
itive definite sphericalmatrix B ∈ R3×3 we have B = diag(a2I2, b2)
for some non-zero a and b.

A more general definition of spherical matrices was also intro-
duced in Wang et al. (2013), which will also be used in the follow-
ing of this paper.
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