
Automatica 51 (2015) 192–199

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Boundary feedback stabilization of the Schlögl system✩

Martin Gugat a, Fredi Tröltzsch b

a Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Mathematik, Cauerstr. 11, 91058 Erlangen, Germany
b Technische Universität Berlin, Institut für Mathematik, Sekretariat MA 4-5, Str. des 17. Juni 136, 10623 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 3 December 2012
Received in revised form
15 January 2014
Accepted 29 September 2014

Keywords:
Lyapunov function
Boundary feedback
Robin feedback
Parabolic partial differential equation
Exponential stability
Stabilization of periodic orbits
Periodic operation
Stabilization of desired orbits
Poincaré–Friedrichs inequality

a b s t r a c t

The Schlögl system is governed by a nonlinear reaction–diffusion partial differential equationwith a cubic
nonlinearity that determines three constant equilibrium states. It is a classical example of a chemical
reaction system that is bistable. The constant equilibrium that is enclosed by the other two constant
equilibrium points is unstable.

In this paper, Robin boundary feedback laws are presented that stabilize the system in a given
stationary state or more generally in a given time-dependent desired system orbit. The exponential
stability of the closed loop system with respect to the L2-norm is proved. In particular, it is shown that
with the boundary feedback law the unstable constant equilibrium point can be stabilized.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Schlögl system has been introduced in Schlögl (1972)as a
model for chemical reactions for non-equilibrium phase transi-
tions. It describes the concentration of a substance in 1-d. In neu-
rology, the same nonlinear reaction–diffusion system is known
under the name Nagumo equation and models an active pulse
transmission through an axon (Chen & Guo, 1992; Nagumo, 1962).
It is also known as Newell–Whitehead–Segel equation (see Newell
& Whitehead, 1969 and Segel, 1969). This system is governed by
a parabolic partial differential equation with a cubic nonlinearity
that determines three constant equilibrium states u1 < u2 < u3,
where u2 is unstable. In view of its simplicity, the Schlögl system
may serve as a test case for the stabilization of an unstable equi-
librium for reaction–diffusion equations that generate traveling
waves. While this task might appear a little bit academic for the
Schögl model, it is of paramount importance for more complicated
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equations such as the bidomain system in heart medicine, cf. Ku-
nisch and Wagner (2013). Here, the goal of stabilization is to ex-
tinguish undesired spiral waves as fast as possible and hereafter to
control the system to a desired state. However, there are similar-
ities between these models and it is therefore reasonable to con-
sider the same problem for the Schögl system.

The control functions can act in the domain (distributed control)
or on its boundary. In this paper, the problemof boundary feedback
stabilization is studied. Example 1 illustrates that, without the
influence of the boundary conditions, the system state approaches
exponentially fast a stable equilibrium, even if the initial state is
arbitrarily close to the unstable equilibrium.

Also, the more general case of boundary stabilization of time-
dependent states of the system is considered in this paper. This
includes the stabilization of periodic states that is interesting as a
tool to stabilize the periodic operation of reactors, see Silverston
and Hudgins (2013). This case also includes the stabilization of
traveling waves.

In this paper, linear Robin-feedback laws are presented that
yield exponential stability with respect to the L2-norm for desired
orbits of the system. The term desired orbit is used to describe
a possibly time-dependent solution of the partial differential
equation that defines the system. The exponential stabilization
is particularly interesting since the boundary feedback allows to
stabilize the system in the unstable equilibrium that is enclosed by
the other two constant equilibrium points.
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To show that the system is exponentially stable, we construct
a strict Lyapunov function. The construction of strict Lyapunov
functions for semilinear parabolic partial differential equations has
also been studied in Mazenc and Prieur (2011). In Mazenc and
Prieur (2011), it is assumed that the feedback is space-periodic or
the boundary conditions are chosen in such a way that the product
of the state and the normal derivative vanishes at the boundary.
This assumption implies that the boundary terms that occur after
partial integration in the time derivative of the Lyapunov function
become nonpositive.

For the state feedback that is presented in this paper, this as-
sumption does not hold. Therefore a different approach is used in
the analysis: The Poincaré–Friedrichs inequality is used to show
that the Lyapunov function is strict. Note that the Poincaré–
Friedrichs inequality is oftenused to prove the existence or unique-
ness of the solution of partial differential equations. However, to
our knowledge, up to now it has not been used to show that a Lya-
punov function is strict.

The Schlögl system has the interesting property that it allows
traveling wave solutions (i.e. uniformly translating solutions mov-
ing with a constant velocity) that have the shape of the hyper-
bolic tangent (see Karzari, Lemarchand, & Mareschal, 1996). The
traveling wave solutions connect the two stable constant station-
ary states. The problem to steer associated wave fronts to rest by
distributed optimal control methods was considered in Buchholz,
Engel, Kammann, and Tröltzsch (2013) for the Schlögl model and
in Casas, Ryll, and Tröltzsch (2013) for the FitzHugh–Nagumo sys-
tem, where spiral waves occur. In the present paper, we propose a
boundary control law that stabilizes the system exponentially fast
to a desired orbit.

The boundary control of a linear heat equation viameasurement
of domain-averaged temperature has been studied in Bošković,
Krstić, and Liu (2001), Weijiu (2003). Results about the control of
parabolic partial differential equations with Volterra nonlineari-
ties are given in Vazquez and Krstic (2008a,b). In particular, these
results are applicable to semilinear parabolic equations. The con-
structed control laws are expressed by Volterra series. The authors
prove the local exponential stability.

In Vazquez and Krstic (2008a,b), a feedback law is proposed to
locally stabilize stationary profiles for arbitrarily large reaction co-
efficients and lengths of the system. Here we show that, under re-
strictions on the magnitude of the reaction term and the length of
the system, a simpler feedback law using boundary values only can
globally exponentially stabilize any reference trajectory.

In this paper, a 1-d system of length L is studied. In the reac-
tion–diffusion equation, the diffusion coefficient is normalized to
1. The parameter K determines the size of the reaction term. To
show the exponential decay of the solution, it is assumed that L2K
is sufficiently small. Thus, if the reaction rate K is large, the space
interval [0, L] has to be sufficiently short. In this case, Lemma 1
states that the stationary states are uniquely determined by the
corresponding boundary value problems. An example illustrates
that, if L2 K is too large, several stationary statesmay exist that sat-
isfy the same Robin boundary conditions. Thus, in this situation it
is impossible to stabilize the system using these Robin boundary
conditions.

This paper has the following structure: In Section 2, themodel is
defined and a result about the well-posedness is given. Moreover,
the stationary states and time-dependent orbits are discussed. In
Section 3, the result about two-sided boundary feedback stabiliza-
tion is presented: if the length L of the reactor is sufficiently small,
there is a feedback constant C > 0 such that the Robin boundary
conditions ensure stability. Numerical experiments illustrate the
results. Section 4 contains conclusions.

2. The model

2.1. Definition of the model

In this section, the Schlögl model is defined.
Let real numbers u1 ≤ u2 ≤ u3 be given. Define the polynomial

ϕ(u) = (u − u1)(u − u2)(u − u3). (1)

Due to its definition, ϕ has the property

mϕ = inf
u∈(−∞,∞)

ϕ′(u) > −∞, (2)

that is the derivative of ϕ is bounded below. The infimum mϕ < 0
is attained at the point (u1 + u2 + u3)/3.

The system that is considered in this paper is governed by the
semilinear parabolic partial differential equation

ut = uxx − Kϕ(u) (3)

with a constant K > 0 complemented by appropriate initial and
boundary conditions. In the reaction–diffusion equation (3), the
diffusion coefficient is equal to 1 and the constant K determines
the size of the reaction term. If K equals zero, the reaction term
vanishes and the partial differential equation (3)models a pure dif-
fusion process.

Let the length L > 0 be given. Let ustat
∈ H2(0, L) denote a

stationary solution of (3), that is u = ustat solves the equation

uxx(x) = Kϕ(u(x)), x ∈ [0, L]. (4)

To define a feedback law, introduce a real constant C > 0. For the
stabilization of (3), for (t, x) ∈ [0, ∞) × [0, L], consider the Robin
boundary conditions

ux(t, 0) = C(u(t, 0) − ustat(0)) + ustat
x (0), (5)

ux(t, L) = −C(u(t, L) − ustat(L)) + ustat
x (L). (6)

Notice that the boundary values ustat
x (0) and ustat

x (L) are well
defined since ustat

x ∈ H1(0, L).
With the feedback laws (5), (6), if

L2 K <
1

2 |mϕ |,

the Lyapunov function presented in Theorem 3 decays exponen-
tially.

2.2. Existence and uniqueness of the solutions

In Buchholz et al. (2013), the well-posedness of the system
governed by (3) is studied for homogeneous Neumann boundary
conditions. It is shown that for initial data in L∞(0, L), the system
has a uniqueweak solution that is continuous for t > 0. If the initial
state is continuous, the solution of the system is continuous for all
times. The same result extends to the Robin boundary conditions
(5), (6). In the associated theorem below, the standard Sobolev
space

W (0, T ) = L2(0, T ,H1(0, L)) ∩ H1(0, T ;H1(0, L)′)

is used. Moreover, the notation

QT = (0, T ) × (0, L)

is used.

Theorem 1. Suppose that it holds K ≥ 0 and u1 < u2 < u3. Then,
for all f ∈ L2(QT ), u0 ∈ L∞(0, L), gi ∈ Lp(0, T ), i = 1, 2, p > 2, the
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