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1. Introduction

Time-variant dynamics are present in all kinds of engineering
applications, and they can be classified according to the nature of
the time-variation. Either the time-variation is due to a physical
phenomenon or a (scheduling) parameter that varies smoothly as a
function of time (class A), or it is induced by the switching between
afinite number of linear time-invariant systems (class B). Examples
of class A dynamics are, thermal drift in power electronics (Chen
& Yuan, 2011); fatigue, ageing and mortification in biomedical
measurements (Aerts & Dirckx, 2010); pit corrosion of metals (Van
Ingelgem, Tourwé, Vereecken, & Hubin, 2008); control of crane
dynamics (Abdel-Rahman, Nayfeh, & Masoud, 2003); aeroplane
dynamics during take off and landing (Dimitriadis & Cooper,
2001); and impedance measurements for determining the state-
of-charge of batteries (Pop, Bergveld, Notten, & Regtien, 2005;
Rodrigues, Munichandraiah, & Shukia, 2000). Examples of class B
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dynamics are, regime switching in power electronics (Aguilera,
Godoy, Agliero, Goodwin, & Yuz, 2014), econometrics (Hamilton,
1990), and control applications (Yin, Kan, Wang, & Xu, 2009); and
more general, hybrid systems (see Paoletti, Juloski, Ferrari-Trecate,
& Vidal, 2007 and the references therein).

In this paper we consider class A dynamics only. The time-
variant frequency response function (TV-FRF) introduced in Zadeh
(1950a,b) provides deep insight into the time-variant behaviour of
class A dynamics. Hence, there is a need for methods that estimate
the TV-FRF from input-output data. According to the parametrisa-
tion used, one can distinguish four model classes for describing the
class A dynamics:

1. Parametric in both the dynamics and the time-variation: a
lot of estimation algorithms are available, see Niedzwiecki
(2000), Poulimenos and Fassois (2006) and Téth, Laurain,
Gilson, and Garnier (2012) and the references therein. The time-
or parameter-variant system is modelled using a differential,
difference, or state space equation where the (matrix) coeffi-
cients are affine functions of time- or parameter-dependent ba-
sis functions, for example, wavelets in Li and Billings (2011) and
Tsatsanis and Giannakis (1993), polynomials in Lataire and Pin-
telon (2011), sines and cosines in Allen (2008) and Louarroudi,
Lataire, Pintelon, Janssens, and Swevers (2013), or integrated
white noise in Kitagawa and Gersch (1985).

2. Parametric in the dynamics and nonparametric in the (slow)
time-variation: see Georgiev (1989), Liu (1997) and Niedzwiecki
and Kaczmarek (2005).
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3. Nonparametric in the dynamics and parametric in the (slow)
time-variation: periodic time-variation in Sams and Mar-
marelis (1988) and Louarroudi, Pintelon, and Lataire (2012)
parametrised by sines and cosines; and arbitrary time-variation
in Lataire, Pintelon, and Louarroudi (2012) parametrised by
polynomials.

4. Nonparametric in both the dynamics and the (very) slow time-
variation: the TV-FRF is estimated using the short-time Fourier
transform (Allen & Rabiner, 1977). The basic assumption made
is that the system is time-invariant within the short sliding time
window: see, for example, Spiridonakos and Fassois (2009) for
noise power spectra and Sanchez, Louarroudi, Bragos, and Pin-
telon (2013) for FRFs.

Model classes 1 and 2 require a parametric model for describ-
ing the system dynamics, which is not the case for model classes
3 and 4. The latter are natural extensions of the nonparamet-
ric FRF representation of linear time-invariant systems. The three
disadvantages of parametrising the system dynamics w.r.t. to a
nonparametric representation are the following: (i) the type of
dynamic model must be chosen: differential equation (s-domain),
difference equation (z-domain), fractional differential equation
(e.g., v/s-domain), or partial differential equation; (ii) the dynamic
model order must be chosen (orders time-domain derivatives or
time-domain shifts of the input and output signals); and (iii) esti-
mating the model parameters mostly involves a nonlinear minimi-
sation. The latter requires the generation of initial estimates and
includes possible problems with local minima. The main advan-
tages of parametric models are the compact description and the
smaller estimation uncertainty. Nonparametric estimation tech-
niques are very helpful to get an idea of the complexity of the
parametric modelling step and to validate the estimated paramet-
ric system model. Compared with the algorithms for model class
3, the methods developed for model class 4 have the disadvan-
tage that they require a trade-off between accurate tracking of the
time-variation (the sliding time window should be as small as pos-
sible) and sufficiently large frequency resolution of the estimated
dynamics (the sliding time window should be as large as possible).
In addition, at the cost of a more complicated estimation algorithm,
the methods for model class 3 result in TV-FRF estimates with a
much larger frequency resolution.

This paper considers the third model class with nonparametric
dynamics and arbitrary time-variation parametrised by Legendre
polynomials. The approach presented in Lataire et al. (2012) -
called the direct method in the sequel of this paper - has the
disadvantages that a lot of signal periods are needed and that it
is not applicable to random excitations. In this paper an indirect
method is proposed that is applicable to arbitrary excitations and
a few (less than one) period(s) of periodic inputs.

The paper is organised as follows. First, the class of linear
time-variant systems considered and the stochastic framework are
defined (Sections 2 and 3). Next, an indirect method for estimating
nonparametrically the TV-FRF of this class of systems is developed
and analysed in detail (Section 4). Further, the proposed indirect
method is compared with the direct approach (Section 5). Finally,
the whole procedure is illustrated via measurements on a time-
variant electronic circuit (Section 6).

2. The time-variant frequency response function

First, we recall the definition and the properties of the
time-variant frequency response function (TV-FRF). Next, a non-
parametric-in-the-dynamics and parametric-in-the-time-varia-
tion representation for a class of (slowly) time-varying systems is
given.

2.1. Definition and properties of the TV-FRF

The dynamic behaviour of a linear time-variant (LTV) system
is uniquely characterised by its response g(t, t) to a Dirac im-
pulse applied at time instant t = t (Zadeh, 1950a,b). Taking the
Fourier transform of the shifted time-variant impulse response
g(t, t — t) defines the TV-FRF, called the system function in Zadeh
(1950a,b),
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G (jo, t) =/ gt t—1)e’”dr. (1)
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For causal systems (g(t, ) = 0 fort < ) the lower integration

boundary in (1) is replaced by zero. The time-variant FRF (1) has

the following properties:

1. The steady state response to sin(wgt) equals
|G(jwo, t)[sin(wot + LG(jwo, t)) (2)

which is an amplitude and phase modulated sine wave. Note
that the Fourier spectrum of (2) is non-zero in the close
neighbourhood of wy, resulting in a skirt-like spectrum around
wyp (see Lataire et al., 2012).

2. Assuming zero initial conditions, the transient response yq(t) to
an input u(t) is found as

Yo(t) =L7{G (s, ) U (5)} (3)

with U(s) the Laplace transform of u(t), and L~!{} the inverse
Laplace transform.

Note that properties (2) and (3) are natural extensions of the linear
time-invariant (LTI) case.

2.2. Nonparametric representation of the TV-FRF

The nonparametric representation of the dynamics of the TV-
FRF is obtained in two steps.
First, the TV-FRF (1) is expanded in series w.r.t. time

o0
G(jw,t) =) G (o) f; (t) ,telo,T] 4)
r=0
with f.(t), r = 0,1,..., a complete set of basis functions, and
T the experiment time. G, (jw), r = 0,1,..., are the complex

coefficients of the series expansion which can be interpreted as
FRFs of LTI systems. Note that the basis functions can always be
chosen such that the constraints

T
fo(t) =1 and %/ﬁ(t)dt:O forr >0 (5)
0

are satisfied.
In a second step, the infinite sum (4) is approximated by a finite
sum

Np
G(o.t) =) G (o)fr(t) tel0.T]. (6)
r=0

Representation (6) is parametric in the time-variation (the basis
functions f;(t) are known), and nonparametric in the unknown
FRFs G, (jw),r = 0, 1, ..., Np. Note that in practise N;, is unknown
and, hence, should also be estimated from the data.

Eq. (6) motivates the following assumption:

Assumption 1 (Slow Time-variation). The TV-FRF (1) of the linear
time-variant system can be written as (6), where f.(t), r =
0, 1,..., Ny, are polynomials of order r satisfying (5).

The term “slow time-variation” in Assumption 1 is justified as
follows. For the Legendre polynomials used in the indirect method
(see Section 3), the spectral content of f; (t) is concentrated around
DC. However, this does not exclude that the time-variation can be
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