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a b s t r a c t

Theorems on Implicit Lyapunov Functions (ILF) for finite-time and fixed-time stability analysis of
nonlinear systems are presented. Based on these results, new nonlinear control laws are designed for
robust stabilization of a chain of integrators. High order sliding mode (HOSM) algorithms are obtained
as particular cases. Some aspects of digital implementations of the presented algorithms are studied, it
is shown that they possess a chattering reduction ability. Theoretical results are supported by numerical
simulations.
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1. Introduction and related works

Many practical applications require severe time response con-
straints (for security reasons, or simply to improve productiv-
ity). That is why, finite-time stability and stabilization problems
have been intensively studied, see (Bhat & Bernstein, 2000; Haimo,
1986;Moulay & Perruquetti, 2006; Orlov, 2009; Roxin, 1966). Time
constraint may also appear in observation problems when a finite-
time convergence of the state estimate to the real values is re-
quired: Bejarano and Fridman (2010), Engel and Kreisselmeier
(2002), Menard, Moulay, and Perruquetti (2010), Perruquetti, Flo-
quet, and Moulay (2008), Shen, Huang, and Gu (2011).

Let us stress that finite-time stability property is frequently
associated with HOSM controls, since these algorithms should
ensure finite-time convergence to a sliding manifold (Levant,
2005a; Orlov, 2005; Polyakov & Poznyak, 2009; Utkin, Guldner, &
Shi, 2009). Typically, the associated controllers have mechanical
and electromechanical applications (Bartolini, Pisano, Punta, &
Usai, 2003; Chernousko, Anan’evskii, & Reshmin, 2008; Dinuzzo &
Ferrara, 2009; Ferrara & Giacomini, 1998).
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The theoretical background of HOSM control systems is very
well developed (Levant, 2005a,b, 2007). However, applications of
the existing HOSM control algorithms are complicated, since there
are a few constructive algorithms for tuning the HOSM control
parameters. Most of them are restricted to the second order sliding
mode systems (Cruz-Zavala, Moreno, & Fridman, 2011; Levant,
2007; Polyakov, 2012; Polyakov & Poznyak, 2009).

Fixed-time stability, that demands boundedness of the settling-
time function for a globally finite-time stable system, was studied
in Cruz-Zavala et al. (2011), Polyakov (2012), Polyakov and Frid-
man (2014). This property was originally discovered in the context
of homogeneous systems (Andrieu, Praly, & Astolfi, 2008). Fixed-
time stability looks promising if a controller (observer) has to be
designed in order to provide some required control (observation)
precision in a given time and independently of initial conditions.

Themain tool for analysis of finite-time and fixed-time stability
is the Lyapunov function method (see, for example, Bhat &
Bernstein, 2000; Moulay & Perruquetti, 2006; Polyakov & Fridman,
2014), which is lacking for constructive design in the nonlinear
case. This paper deals with ILFmethod (Adamy& Flemming, 2004),
which relies on Lyapunov functions defined, implicitly, as solutions
to an algebraic equation. Stability analysis does not require solving
this equation, since the implicit function theorem (Courant &
John, 2000) helps to check all stability conditions directly from
the implicit formulation. The similar approach was presented
in Korobov (1979) for control design and called the controllability
function method (see, also Anan’evskii, 2011).

This paper addresses the problem of a control design for
the robust finite-time and fixed-time stabilization of a chain of
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integrators. The ILF method is used to design the control laws
together with Lyapunov functions for closed-loop systems. This
method allows us to analyze robustness of the closed-loop system
and to design a high order sliding mode control algorithm, which
rejects boundedmatched exogenous disturbances. Finite-time and
fixed-time stability conditions were obtained in the form of Linear
Matrix Inequalities (LMI). They provide simple constructive schemes
for tuning the control parameters in order to predefine the required
convergence time and/or to guarantee stability and robustness
with respect to disturbances of a given magnitude.

Through the paper the following notations will be used:

• R is the set of real numbers, R+ = {x ∈ R : x > 0};
•

dV
dt


(.)

is the time derivative of a function V along the solution
of a differential equation numbered as (.);

• ∥ · ∥ is the Euclidean norm in Rn;
• diag{λi}

n
i=1 is the diagonal matrix with the elements λi;

• a continuous function σ : R+ → R+ belongs to the class K if
it is monotone increasing and σ(h) → 0+ as h → 0+;

• for a symmetric matrix P = PT the minimal and maximal
eigenvalues are denoted by λmin(P) and λmax(P),

• int(Ω) is the interior of the set Ω ⊆ Rn.

2. Problem statement

The paper deals with finite-time and fixed-time stabilization
problems for the disturbed chain of integrators. Note that a control
design scheme developed for such systems usually admits exten-
sion to feedback linearizable nonlinear multi-input multi-output
systems (Isidori, 1995). The problem statement presented below
is also typical for high-order sliding mode control design (Levant,
2005a).

Consider a linear single input system of the following form:

ẋ(t) = Ax(t) + bu(t) + d(t, x(t)), t > 0, (1)

A =

 0 1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 and b =

 0
. . .
0
1

 ,

where x ∈ Rn is the state vector, u ∈ R is the control input, and the
function d : R+×Rn

→ Rn describes the system uncertainties and
disturbances. The whole state vector x is assumed to be measured.
Let the function d be measurable locally bounded uniformly in
time, i.e. supt∈R+,x∈Rn:∥x∥<δ ∥d(t, x)∥ < ∞ for any δ > 0. Both
the control function u and the function d are admitted to be
discontinuous with respect to x. For example, the function d may
describe unknown dry friction of a mechanical model. The analysis
of such systems requires a specialmathematical framework. In this
paper we use Filippov theory (Filippov, 1988).

The goal of the paper is to develop control laws such that the
origin of the closed-loop system (1) will be globally asymptotically
stable and all its trajectories will reach the origin in a finite time or
in the fixed time Tmax ∈ R+. In addition, the control algorithms to
be developed should have effective schemes for tuning the control
parameters and assigning of the settling time.

The control design is based on ILF approach to finite-time
and fixed-time stability analysis, which is developed in the next
section.

3. Preliminaries

3.1. Finite-time and fixed-time stability

Consider the system defined by

ẋ(t) = f (t, x(t)), t ∈ R+, x(0) = x0, (2)

where x ∈ Rn is the state vector, f : R+ × Rn
→ Rn is a nonlinear

vector field locally bounded uniformly in time. If f is a locally
measurable function that is discontinuouswith respect to the state
variable x, then a solution of the Cauchy problem (2) is understood
in the sense of Filippov (1988), namely, as an absolutely continuous
function satisfying the differential inclusion

ẋ(t) ∈ K [f ](t, x(t))

for almost all t ∈ [0, t∗), where t∗ ∈ R+ or t∗ = +∞. The set-
valued function K [f ] : R+ × Rn ⇒ Rn is defined for any fixed
(t, x) ∈ R+ × Rn as follows:

K [f ](t, x) =


ε>0


N:m(N)=0

co f (t, B(x, ε) \ N),

where co(M) defines the convex closure of the setM ⊂ Rn, B(x, ε)
is the ball with the center at x ∈ Rn and the radius ε ∈ R+, the
equality m(N) = 0 means that the Lebesgue measure of the set
N ⊂ Rn is zero.

Let the origin be an equilibrium of (2), i.e. 0 ∈ K [f ](t, 0).
The system (2) may have non-unique solutions and may admit
both weak and strong stability (see, for example, Filippov, 1988).
This paper deals only with the strong stability properties, which
ask for stable behavior of all solutions of the system (2). The
next definition of uniform finite-time stability is just a compact
representation of Definition 2.5 from Orlov (2005).

Definition 1. The origin of system (2) is said to be globally uni-
formly finite-time stable if it is globally uniformly asymptotically
stable (see, for example, Orlov, 2005) and there exists a locally
bounded function T : Rn

→ R+ ∪ {0}, such that x(t, x0) = 0 for
all t ≥ T (x0), where x(·, x0) is an arbitrary solution of the Cauchy
problem (2). The function T is called the settling-time function.

Asymptotic stability of the time-independent (autonomous) sys-
tem always implies its uniform asymptotic stability (see, for exam-
ple, Clarke, Ledyaev, & Stern, 1998). For finite-time stable systems
this is not true in general case (see, for example, Polyakov & Frid-
man, 2014), since Definition 1 additionally asks a uniformity of the
settling time with respect to initial conditions.

The origin of system ẋ(t) = −|x(t)|0.5sign[x(t)], x ∈ R is glob-
ally uniformly finite-time stable, since its settling-time function T
is locally bounded: T (x0) = 2

√
|x0|.

Definition 2 (Polyakov, 2012). The origin of system (2) is said to
be globally fixed-time stable if it is globally uniformly finite-
time stable and the settling-time function T is globally bounded,
i.e. ∃Tmax ∈ R+ such that T (x0) ≤ Tmax, ∀x0 ∈ Rn.

The presented definition just asks more: strong uniformity of
finite-time stability with respect to initial condition. The origin
of system ẋ(t) = −


|x|0.5(t) + |x|1.5(t)


sign(x(t)), x ∈ R, is

globally fixed-time stable, since its settling time function T (x0) =

2 arctan(
√

|x0|) is bounded by π ≈ 3.14.
The uniformity of finite-time and fixed-time stability with

respect to system disturbances can also be analyzed. For instance,
finite-time stability, which is uniform (in some sense) with respect
to both initial conditions and system disturbances, was called
equiuniform finite-time stability (Orlov, 2005).

3.2. Implicit Lyapunov function method

This subsection introduces some stability theorems further
used for control design. They refine the known results about
global uniform asymptotic, finite-time and fixed-time stability of
differential inclusions to the case of implicit definition of Lyapunov
function. The next theorem extends Theorem 2 from Adamy and
Flemming (2004).
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