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a b s t r a c t

This paper focuses on the performance and robustness analysis of stochastic jump linear systems. In the
presence of stochastic jumps, state variables evolve as random process, with associated time varying
probability density functions. Consequently, system analysis is performed at the density level and a
proper metric is necessary to quantify the system performance. In this paper, Wasserstein metric that
measures a distance between probability density functions is employed to develop new results for the
performance analysis of stochastic jump linear systems. Both transient and steady-state performance of
the systems, with given initial state uncertainties, can be analyzed in this framework. Also, we prove
that the convergence of the Wasserstein metric implies the mean square stability. We present a novel
‘‘Split-and-Merge’’ algorithm for propagation of state uncertainty in such systems. Overall, this study
provides a unifying framework for the performance and robustness analysis of general stochastic jump
linear systems, and not necessarily Markovian that is commonly assumed. The usefulness and efficiency
of the proposed method are verified through numerical examples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A jump linear system is defined as a dynamical system con-
structed with a set of linear subsystem dynamics and a switching
logic that conduct a switching between linear subsystems. Over
decades, a jump linear system has attracted a wide range of re-
searches due to its practical implementations. For instance, jump
linear systems are used for power systems, manufacturing sys-
tems, aerospace systems, networked control systems, etc.

In general, a jump linear system can be divided into two dif-
ferent categories depending on the switching logic. One branch
is a deterministic jump linear system where the jump sequence is
driven deterministically by a certain switching logic. The utiliza-
tion of such systems stems from plant stabilization (Minto & Ravi,
1991), adaptive control (Narendra & Balakrishnan, 1994), system
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performance (Lin & Antsaklis, 2009), and resource-constrained
scheduling (Boctor, 1990). In most cases, the system stability has
been one of the major issues to investigate since even stable
subsystems make the system unstable by the switching. Hence,
numerous results have been established for the stability of such
systems, and the recent literature (Lin & Antsaklis, 2009) provides
the necessary and sufficient conditions for asymptotic stability.

Unlike the deterministic jump linear system, a stochastic jump
linear system (SJLS), which is another category of jump linear sys-
tems, refers to systems with a stochastic switching process. This
type of jump linear systems is commonly used to represent the
randomness in the switching such as communication delays or
packet losses in the networked control systems (Hassibi, Boyd, &
How, 1999; Xiao, Hassibi, & How, 2000). In Hassibi et al. (1999),
the networked control system with packet losses was modeled
as an asynchronous dynamical system incorporating both discrete
and continuous dynamics, and its stability was analyzed through
Lyapunov techniques. Since then, this problem has been formu-
lated in a more general setting by representing the various as-
pects of communication uncertainties as Markov chains (Coviello,
Minero, & Franceschetti, 2011; Liu, Ho, & Niu, 2009; Xiong & Lam,
2007; You & Xie, 2011). Stability analysis in the presence of such
uncertainty, has been performed in the Markov jump linear sys-
tems (MJLSs) framework (Karan, Shi, & Kaya, 2006; Lee & Dullerud,
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2006; Xiao et al., 2000; Zhang, Shi, Chen, & Huang, 2005; Zhang &
Boukas, 2009). Especially, Zhang and Boukas (2009) analyzed the
stability ofMJLSwithout requiring any knowledge of the structures
in partially unknown Markov transition probabilities. Further, the
stochastic stability for a class of nonlinear stochastic systems with
semi-Markovian jump parameters is introduced in Hou, Luo, Shi,
and Nguang (2006) and Li, Wu, and Shi (2013). Most previous lit-
eratures, however, have only dealt with steady-state analysis in
terms of the system stability.

Beyond the current literature, this paper has a key contribution
for the analysis of a SJLS as follows. Based on the theory of opti-
mal transport (Villani, 2008), we propose new probabilistic tools
for analyzing the performance and robustness of SJLSs. Compared
to the current literatures that only guarantee asymptotic perfor-
mance with a deterministic arbitrary initial state condition, our
contribution is to develop a unifying framework enabling both
transient and asymptotic performance analysis with uncertain ini-
tial state conditions. The main difficulty dealing with analysis of
SJLSs is that the system trajectories differ from every run due to the
random switching. Moreover, the system state for SJLSs becomes
random variables with a corresponding probability density func-
tion (PDF) even with a deterministic initial state condition. There-
fore, we need to adopt a propermetric tomeasure the performance
and robustness of SJLSs in the distributional sense. In this paper,
the Wasserstein metric that enables uncertainty quantification by
evaluating a distance between PDFs is employed to measure the
performance of SJLSs. We also prove that the convergence of this
metric implies themean square stability. To sumup, this paper pro-
vides anew framework for the performance and robustness analysis
of SJLSs in the existence of initial state uncertainties and without
any restriction on the underlying jump processes.

The remainder of this paper is organized as follows. In Section 2,
we provide a brief review of the preliminaries. Section 3 deals
with the performance and robustness analysis of SJLSs, and
we propose a computationally efficient tool for this purpose.
Numerical examples are provided in Section 4, to illustrate results
for the performance analysis, developed in this work. Section 5
concludes the paper.
Notation: The set of real andnatural numbers are denoted byR and
N, respectively. Further, N0 , N ∪ {0}. The symbols tr(·), ⊗, and
vec(·) denote the trace of a square matrix, Kronecker product, and
vectorization operators, respectively. The abbreviation m.s. stands
for the convergence in mean-square sense. The notations P(·) and
X ∼ ρ (x) represent the probability and the random variable
X with PDF ρ (x), respectively. The symbol N (µ, Σ) is used to
denote the PDF of a Gaussian random vector with a mean µ and
a covariance Σ .

2. Preliminaries

Consider a discrete-time jump linear system as follows.

x(k + 1) = Aσkx(k), k ∈ N0 (1)

where k is a discrete-time index, x(k) is the state vector, and Aσk
denotes the system matrices. σk ∈ M , {1, 2, . . . ,m} stands
for the stochastic jump process, representing the switching among
m different modes of (1). In this paper, we will consider general
stochastic jump processes σk, and hence σk can be any arbitrary
random process. Then, the resulting dynamics becomes a SJLS as
defined next.

Definition 1 (Stochastic Jump Linear System). Tuple of the form
({π (k)}∞k=1, {A1, . . . , Am}) is termed as a SJLS, provided the mode
dynamics are given by (1);π(k) denotes the occupation probability
vector at time k for the prescribed stochastic process σk.

Remark 1. A SJLS, as defined above, consists of a sequence of
mode-occupation probability vectors and a set of subsystem dy-
namics. If the jump processes σk is deterministic, then at each time,
π(k)will have integral co-ordinates (single 1 and remainingm−1
zeros), resulting in a deterministic switching sequence. If, however,
σk is stochastic jump processes, thenπ(k)will contain proper frac-
tional co-ordinates, resulting in a randomized switching sequence
where at each time, exactly one out of m modes will be chosen
according to probability π(k). Thus, starting from a deterministic
initial condition, each execution of the SJLS may lead to different
switching sequences σk, and hence results in realization of differ-
ent trajectories on the state space. As a consequence, even with
a fixed initial condition, repeated executions of stochastic jumps
yield a spatio-temporal evolution of joint state PDF ρ (x (k)).

Next, we distinguish several different categories of SJLSs according
to inherent stochastic jump processes as follows.

(1) i.i.d. jump process:
A SJLS switching probability is called stationary, if the occu-
pation probability vector π (k) remains stationary in time. In
particular, a stationary deterministic switching sequence im-
plies execution of a single mode (no switching). A stationary
randomized switching sequence implies i.i.d. jump process.

(2) Markov jump process:
Consider a discrete-time discrete state Markov chain with
mode transition probabilities given by

pij = P (σk+1 = j | σk = i)

where pij ≥ 0, ∀i, j ∈ M. Hence, for k ≥ 0, the switching prob-
ability π (k) ∈ Rm of the modes of (1), is governed by

π(k + 1) = π(k)P, π(0) = [π1(0) · · · πm(0)]

where π(0) is a given initial switching probability. TheMarkov
transition probability matrix P ∈ Rm×m is a right stochastic ma-
trix with row sum

m
j=1 pij = 1, ∀i ∈ M.

(3) Semi-Markov jump process:
For a homogeneous and discrete-time semi-Markov chain,
semi-Markov kernel q is defined by

qij(k) = P(σn+1 = j, Xn+1 = k|σn = i)

where Xn denotes the sojourn time in state σn = i. Note that
the transition probability pij in Markov chain can be expressed
in terms of the semi-Markov kernel by pij =


∞

k=0 qij(k).

3. Performance and robustness analysis using Wasserstein
metric

Uncertainties in a SJLS appear at execution level due to random
switching sequence. Additional uncertainties may stem from
imprecise setting of initial conditions and parameter values. These
uncertainties manifest as the evolution of the state PDF ρ (x (k)).
Thus, a naturalway to quantify the uncertainty for the performance
of a SJLS, is to compute the ‘‘distance’’ of the instantaneous
state PDF from a reference measure. In particular, if we fix the
reference PDF as Dirac delta function at the origin, denoted as
δ (x), then the time–history of this ‘‘distance’’ would reveal the
rate of convergence (divergence) for the stable (unstable) SJLS in
the distributional sense. For meaningful inference, the notion of
‘‘distance’’ must define a metric, and should be computationally
tractable. For this purpose, we adopt theWasserstein distance and
details are introduced in the following subsection.
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