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a b s t r a c t

In this paper, a necessary and sufficient condition for the exponential stability of linear systems with
several time-delays is presented. Such a condition is based on the construction of quadratic lower bounds
for the Lyapunov–Krasovskii functionals on the special Razumikhin-type set of functions. The result
reveals a constructive procedure for the stability analysis whose application is illustrated with examples.
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1. Introduction

In this paper, we analyze the stability of linear time-invariant
differential systems with several delays within the framework of
the Lyapunov–Krasovskii functionals. The basic concepts of the
Lyapunov–Krasovskii approach and, in particular, the structure
of the functionals used, were first established in Repin (1965),
Krasovskii (1956) and further developed in Huang (1989), In-
fante and Castelan (1978) and Kharitonov and Zhabko (2003).
More precisely, in Kharitonov and Zhabko (2003) the so-called
complete-type functionals were introduced. These functionals ad-
mit quadratic lower and upper bounds, and for this reason, at the
present time, they are effectively used for construction of expo-
nential estimates of solutions (Kharitonov, 2013), for the stabil-
ity (Egorov & Mondie, 2013) and the robust stability analysis with
respect to uncertainties in coefficients (Kharitonov, 2013) or in de-
lay (Kharitonov & Niculescu, 2003), for computation of critical de-
lays (Ochoa, Mondie, & Kharitonov, 2009). The book of Kharitonov
(2013) gives a detailed survey on the present state of the art in the
area.
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A different modification of the approach is considered in this
paper. Following the work of Huang (1989), we use a functional
with time derivative given as a negative definite quadratic form
of the present state of the system. To apply this functional to
stability analysis, one needs to obtain a quadratic lower bound on
it. However, in Huang (1989) this functional is shown to admit only
a local cubic lower bound on the set of solutions of the system. As
a result, it is considered not to be effective in the stability analysis
and applications.

On the contrary, in this contribution we propose a constructive
method for stability analysis using the functional studied in Huang
(1989). The idea of the method is to use a special Razumikhin-
type condition (see Razumikhin, 1956) for the estimation of the
functional. It turns out that for the stability analysis it is sufficient
to construct a lower bound for the functional on the set of
functions satisfying this condition instead of the set of solutions.
This enables us to establish a necessary and sufficient condition
for the exponential stability, and opens a constructive way for
analysis. The proposedmethod provides possibility to compute the
critical delays (seeMedvedeva & Zhabko, 2013) and to perform the
robustness analysis, as well.

The paper is organized as follows. After some preliminary
definitions in Section 2, we present a constructive necessary and
sufficient condition for the exponential stability (Theorem 1) in
Section 3. Then, Section 4 provides a detailed exposition of the
method for stability analysis which is based on the theoretical
results of Section 3. In Section 5, we discuss the convergence issue
(see Theorem 10) which plays a key role in the application of
the method. In Section 6, we give the illustrative examples. Some
concluding remarks end the paper.
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2. Preliminaries

We consider a time-delay system of the form

ẋ(t) =

m
j=0

Ajx(t − hj), (1)

whereAj ∈ Rn×n, j = 0, 1, . . . ,m, are given constantmatrices, and
0 = h0 < h1 < · · · < hm = h are the delays. Let t0 = 0 be an initial
time instant, and ϕ(θ) be an initial function which is supposed to
be piecewise continuous on the segment [−h, 0]. We denote the
solution of system (1) with the initial function ϕ by x(t, ϕ), and the
segment of the trajectory {x(t + θ, ϕ) | θ ∈ [−h, 0]} by xt(ϕ). We
omit the symbol ϕ when no confusion can arise. Throughout the
paper, we use the Euclidean norm for vectors, and the analogue of
the uniform norm for vector functions ∥ϕ∥h = supθ∈[−h,0] ∥ϕ(θ)∥.

It is well-known (see Bellman & Cooke, 1963) that the char-
acteristic equation of system (1) is of the form det


λI −m

j=0 Aje−λhj


= 0, and its roots are called eigenvalues. System
(1) is said to satisfy the Lyapunov condition if it does not have the
eigenvalues whose sum is equal to zero.

Given a symmetric matrixW , we say that U(τ ) is the Lyapunov
matrix associated with W if it satisfies the following set of equa-
tions (see Kharitonov, 2013)

U ′(τ ) =

m
j=0

U(τ − hj)Aj, τ > 0;

U(−τ) = UT (τ ), τ > 0; (2)
m
j=0

[U(−hj)Aj + AT
j U

T (−hj)] = −W .

The Lyapunov matrix exists and is unique for any symmet-
ric matrix W , if and only if system (1) satisfies the Lyapunov
condition, see Kharitonov (2013). According to Kharitonov and
Zhabko (2003), the matrix U(τ ) associated withW determines the
quadratic functional

v(xt) = xT (t)U(0)x(t)

+ 2xT (t)
m
j=1

 0

−hj
U(−θ − hj)Ajx(t + θ)dθ

+

m
k=1

m
j=1

 0

−hk
xT (t + θ1)AT

k

×

  0

−hj
U(θ1 + hk − θ2 − hj)Ajx(t + θ2)dθ2


dθ1, (3)

such that its time derivative along the solutions of system (1) is
equal to −xT (t)Wx(t). One can check the last fact directly, using
properties (2) of the Lyapunov matrix.

To define a critical delay, we first suppose that hj = αjh, j =

1, 2, . . . ,m, where αj > 0 are fixed, and h > 0 is a basic delay. The
values of basic delay for which system (1) changes the property of
exponential stability to the instability, or vice versa, are said to be
the critical delays.

Finally, let us introduce the set

S =

ϕ : ∥ϕ(θ)∥ 6 ∥ϕ(0)∥, θ ∈ [−h, 0]


.

The set S is the very set whereonwewill further check the positive
definiteness of the functional v.

3. Stability theorem

Here we present our main stability result.

Theorem 1. Given a positive definite matrix W, system (1) is expo-
nentially stable, if and only if there exists a functional v(ϕ) such that
the following conditions hold:

1.
dv(xt)
dt

= −xT (t)Wx(t) along the solutions of system (1);

2. On the set S the functional admits a lower bound of the form

v(ϕ) > µ∥ϕ(0)∥2, µ > 0.

Proof. Necessity. The idea of the proof of the necessity part is bor-
rowed fromHuang (1989). Letv be a functional of the form (3), then
the first condition of the theorem holds, as was mentioned in the
previous section. To prove the second one, take an arbitrary func-
tion ϕ ∈ S, and set α = ∥ϕ∥h. Since ϕ ∈ S, we have ∥ϕ(0)∥ = α.
Integrating system (1) and using Gronwall’s lemma (see Bellman &
Cooke, 1963, p. 31), we obtain that

∥x(t, ϕ)∥ 6 N(t), where N(t) = αK1eKt ,

K =

m
j=0

∥Aj∥, K1 = 1 +

m
j=1

∥Aj∥hj.

Hence, ∥ẋ(t, ϕ)∥ 6 KN(t) 6 KN(δ) ∀t 6 δ, ∀δ > 0, and ∥x(t, ϕ) −

ϕ(0)∥ 6 KN(δ)δ, t 6 δ. Let us choose δ so that KN(δ) = α/(2δ),
note that δ does not depend on α. Then,

∥x(t, ϕ)∥ > ∥ϕ(0)∥ − KN(δ)δ = ∥ϕ(0)∥/2, t 6 δ.

Since system (1) is exponentially stable, we have

v(ϕ) =


∞

0
xT (t, ϕ)Wx(t, ϕ)dt

> λmin(W )

 δ

0
∥x(t, ϕ)∥2dt > λmin(W )δ

∥ϕ(0)∥2

4
,

where λmin(W ) is the smallest eigenvalue of W . Thus, µ =

λmin(W )δ/4 > 0, and the proof of necessity is complete. Note that
µ is obtained constructively.

Sufficiency. Suppose that there exists a functional of the form (3)
satisfying the second condition of the theorem but system (1) is
not exponentially stable. Then there exists a sequence {tk}∞k=1, such
that tk − tk−1 > h, tk −−−−→

k→+∞

+∞, and ∥x(tk)∥ > β > 0. Consider

two cases.
1. Let the solution x(t) be uniformly bounded, i.e. there exists

G > 0 such that ∥x(t)∥ 6 G ∀t > 0. Then, ∥ẋ(t)∥ 6 KG ∀t > 0,
where K =

m
j=0 ∥Aj∥.

Take t ∈ [tk, tk + τ ], τ > 0. Then, ∥x(t)− x(tk)∥ 6 KG(t − tk) 6

KGτ , and, choosing τ = min


β

2KG ; h

, we obtain

∥x(t)∥ > ∥x(tk)∥ − KGτ >
β

2
, t ∈ [tk, tk + τ ],

for every k. Further, let N(t) be the number of intervals [tk, tk + τ ],
contained in [0, t]. These intervals do not intersect with each other
due to the choice of τ , and N(t) −−−−→

t→+∞
+∞. Hence,

 t

0
xT (s)Wx(s)ds >

N(t)
k=1

 tk+τ

tk
xT (s)Wx(s)ds

> λmin(W )
β2τ

4
N(t) −−−−→

t→+∞
+∞.
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