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In this paper, we develop a novel self-propelled particle model to describe the emergent behavior of
a group of mobile agents. Each agent coordinates with its neighbors through a local force accounting
for velocity alignment and collision avoidance. The interactions between agents are governed by path
loss influence and state-dependent rules, which results in topology changes as well as discontinuities
in the local forces. By using differential inclusion technique and algebraic graph theory, we show that

collective behavior emerges while collisions between agents can be avoided, if the interaction topology is
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theoretical results.

jointly connected. A trade-off between the path loss influence and connectivity condition to guarantee
the collective behavior is discovered and discussed. Numerical simulations are given to validate the

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Collective motions of animals such as fish and birds are exam-
ples of large scale self-organization observed in nature. In many
cases, cohesive groups are formed, where hundreds or thousands
of agents move together in the same direction. In order to reveal
the underlying mechanisms, several self-propelled particle models
have been proposed and analyzed (Couzin, Krause, James, Ruxton,
& Franks, 2002; Cucker & Smale, 2007; Olfati-Saber, 2006; Vicsek
& Zafeiris, 2012). Three widely adopted rules behind these mod-
els include repulsion, attraction and alignment (Reynolds, 1987).
More recently, collective behavior and self-organization have also
attracted attention from engineers with the aim of controlling
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mobile robots in the context of cooperative control, formation con-
trol and so on (Haghighi & Cheah, 2012; Liu, Xie, & Zhang, 2014).
Besides considerable interests in the numerical or empirical
modeling for collective behavior, much attention has been paid
to rigorous mathematical analysis. In Jadbabaie, Lin, and Morse
(2003) and Ren and Beard (2005), sufficient conditions were given
for convergence of a simplified first-order Vicsek model. It was
shown that under some joint connectivity conditions on the inter-
action topologies, all the agents eventually move in the same direc-
tion. For the second-order dynamics, the so called C-S model was
proposed in Cucker and Smale (2007). Sufficient conditions were
established to show that flocking can be achieved asymptotically.
Extension to collision avoidance can be seen in Cucker and Dong
(2011). One limitation of the C-S model is that each agent must
interact with all the others during the motion. A theoretical frame-
work for design and analysis of flocking algorithms with second-
order dynamics was presented in Olfati-Saber (2006). Collective
motions were obtained theoretically by applying artificial poten-
tials embodying the three rules mentioned previously. In Zhang,
Zhai, and Chen (2011), the authors proposed a self-propelled model
with only repulsion and alignment forces. Under a joint connectiv-
ity condition, flocks would be assembled in finite time. Distributed
coordination of mobile agents with nonlinear interactions was
studied in Mei, Ren, and Ma (2013), where only relative positions
are needed for each agent. But it is required that the connection
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pattern between agents be fixed all the time. To tackle the issue of
dynamic topology, results of differential inclusions and switched
systems were used to examine the stability analysis of time-
varying flocking in Chen and Zhang (2011), Tanner, Jadbabaie, and
Pappas (2007) and Zavlanos, Tanner, Jadbabaie, and Pappas (2009).

Most of the previous models rely on the aprioristic assumption
that agents interact with all those within a fixed range. However,
in a recent field study of flocks of starlings (Ballerini et al., 2008a),
it is found that interaction is ruled by topological distance rather
than metric distance. In other words, the relevant quantity is how
many intermediate agents separate two birds, not how far apart
they are. This means that the interactions are varying rather than
fixed. In this case, whether the collective behavior of mobile agents
can be achieved theoretically is still unclear.

As a first step towards this direction, in this paper, we introduce
the state-dependent interaction for a self-propelled particle model
in the topological sense. With the state-dependent interactions,
the connection pattern is no longer fixed, but dynamic. Moreover,
the path loss influence depending on relative distances between
agents is considered. The main objective is to develop rigorous
analysis in a general setting and explore how to achieve the
collective motion with collision avoidance. The contributions of
this paper can be summarized as follows:

e For the fixed-range interactions, a widely adopted method is to
employ the invariance principle to determine the asymptotic
stability. In this case, compactness of certain invariant sets
follows from the connectivity directly (Chen & Zhang, 2011;
Olfati-Saber, 2006; Tanner et al.,, 2007; Zhang et al., 2011).
However, for the state-dependent interactions this is not a
trivial task, since no a priori information about the boundedness
of the state-dependent interactions can be inferred. We develop
some novel techniques in terms of nonsmooth analysis coupled
with algebraic theory to solve this problem.

e We investigate the impact of the path loss influence on the
collective behaviors. Theoretically we show that there is a
trade-off between the path loss influence and connectivity
condition to guarantee the collective behavior. This is one
unique feature of state-dependent interactions, which is not
observed in the previous work on fixed-range interactions.

The paper is organized as follows. Section 2 presents the
self-propelled particle model with state-dependent interactions.
In Section 3, we give some preliminaries about the solution of
the model, followed by the convergence analysis in Section 4.
Simulation results are provided in Section 5. Finally, Section 6
concludes the paper.

2. Model formulation

Consider a group of N mobile agents with the dynamics of each
agent described by a double integrator

X)) = 0i(t),  vit) =0;(t), i=1,2,...,N, 1)

where X;, U; € R" are the position and velocity of agent i, respec-
tively, and ii; € R" is the acceleration to be designed.

Numerical and empirical investigations support the idea that
the behavior of agents results from local coordination based upon
the relative positions and velocities with each other. Motivated by
the findings in Ballerini et al. (2008a), we consider that the inter-
action range is state-dependent by incorporating the topological
distance.

Definition 1. The state-dependent interaction is defined as fol-
lows: (i) each agent i interacts with the N* < N closest neighbors
N*(X;); (ii) if agent j interacts with agent i, then agent i also inter-
acts with agent j.

Remark 2. Note that if N* = N, then each agent interacts with all
the others and the state-dependent interaction coincides with the
all-to-all interaction (Cucker & Dong, 2011; Cucker & Smale, 2007;
Gazi & Passino, 2003; Vicsek & Zafeiris, 2012).

We can model the interaction topology between agents as a
dynamic bidirected graph §(x(t)) = (V, &(X(t))), where Vv =
{1,2,...,N}, and &x(t)) C V x V is the set of edges at t. At
each time, each agent assesses the position and/or velocity of its
neighbors N;(X) = N* (&) U{j & V* (X)) : i € N* (%)} within two
non-overlapping behavioral zones: zone of repulsion and zone of
alignment.

In this paper, we propose the following control law for each
agent:

+ 1;[fi,al 5
——

alignment force

U = ¢1 rep
——
repulsion force

b= UIRIMR;,

jeNM®)
Via= Y V(I&[SGN(), (2)
JEN(R)

where &; = X — &;, 0 = 0; — Uj, SGN(0j) = Iv H’ if v # 0 and
0 otherwise; ¢; rep is the repulsion force in the zone of repulsion
with diameter r > 0 corresponding to the hard sphere of agent
i (Ballerini et al., 2008b), in which ¢(s) > 0 is nonincreasing,
¢(s) =0, Vs e [r?, 00) and fooo ¢(s)ds = 00; Y; g is the alignment
force in a larger zone outside the hard sphere with ¥(s) > 0
being continuous and nonincreasing. The introduction of ¥ (s) can
capture the influence or the path loss of communication between
neighboring agents, e.g., ¥ (||X;]|) 1 2 wheren > 0

1 I&RGON

denotes the path loss exponent.

Remark 3. A general form of ¢(||%;]|?) and ¥ (||%;]|) is adopted
in (2). We note that some specific forms of the controller have
been introduced for applications in Vicsek and Zafeiris (2012) and
references therein.

In the following sections, we will examine the conditions under
which collective behaviors would emerge and the impact of the
path loss influence on the eventual motion.

3. Filippov solution and its properties
Leti = [&1.&5, ... 8017, 0 = [0, 01, ... 0007, it = [d], &,
. uf]", and the set of discontinuous points of ii be §. Then
/S C 4142, where 4 is the set of discontinuous points due
to switching from one connection pattern to another, 4, =

{[)?T, 71" e R . thereexist i,j suchthat % = 9; or ¢(s)

is discontinuous at ||5<,-j||2}. It is clear that §; | J $, has measure

zero, and so does 4. In this case, the Filippov solution is an ap-
propriate choice for such dynamical system (1) with discontinuous
right-hand side (2).

Define the center of mass of the group as x, = % SV & and
Ve =q SN i Lletx; = & — xc and v; = ; — v, then

xi(t) = vi(D), vi(t) =ui(t), ieV, (3)

2 This form is inspired by the path loss effect for wireless communications
(Goldsmith, 2005). A similar function called communication strength is used in the
C-S model (Cucker & Smale, 2007; Vicsek & Zafeiris, 2012).
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