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a b s t r a c t

A block decoupling problem in linear multivariable systems is treated for one-degree-of-freedom
controller configurationwith unity output feedback. The plant transfermatrix, whichmay be non-square,
is assumed to have unstable simple poles and zeros that may coincide. A simple existence condition of a
block decoupling controller is obtained by directional interpolation approaches.
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1. Introduction

A number of researchers have been studying the design of diag-
onal decoupling controllers which amounts to eliminate coupling
characteristics between the reference inputs and the plant outputs
so that one input affects only a single output. A more general form
of decoupling design is the block decoupling problem which in-
cludes the diagonal decoupling problem as a special case. The block
decoupling problem has been studied in both of the state-space
and frequency domains. Wonham and Morse (1970) obtain a solv-
ability condition using geometric approach in the state-space do-
main. In the frequency domain, Hautus and Heymann (1983) show
that the decoupling design and the stability problem can be treated
independently by two-degree-of-freedom (2DOF) controller con-
figuration. Lee and Bongirono (1993) show that a diagonal decou-
pling controller, hence a block decoupling controller, always exists
when 2DOF controller configuration is adopted for a plant whose
transfer matrix is rectangular with full row rank. Recently, Kuc̆era
(2013) treats a 2DOF block decoupling problem in themost general
setting in which the measurement output may be different from
the output to be decoupled. He obtains the parameterized form of
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block decoupling controllers and solves an H2 optimal problem as
well.

As stated previously, 2DOF controller configuration is partic-
ularly ideal to decoupling design since stability and decoupling
problems are separate issues. In this regard, decoupling design
with 1DOF controller configuration is more restrictive than 2DOF
configuration and its solvability condition is usually hard to ob-
tain. Howze and Bhattacharyya (1997) point out, however, that the
asymptotic property of unity feedback 1DOF controllers is not frag-
ile with respect to the controller parameters, which is not the case
of 2DOF controllers. Since this asymptotic tracking property is in-
herent to the controller configurations, the similar resultswould be
inferred in 1 and 2DOF block decoupling design and hence 1DOF
block decoupling design has its own advantage (see also Intro-
duction section of Park, 2012). The existence condition for 1DOF
block decoupling controllers is presented by Linnemann andWang
(1993) and Lin andWu (1998). Linnemann andWang (1993) show
that a block decoupling controller exists if a strict block-adjoint
matrix and a stability-factor matrix are externally skew prime. Lin
andWu (1998) derive an existence condition by using partial frac-
tion expansions of the plant transfer matrix and its inverse under
the assumption that they have one coincident unstable pole of or-
der of 1 or 2. Lin andWu (1999) present all achievable input–output
blockmaps as a parameterized form for the case that the plant does
not have coincident unstable poles and zeros. The formula for the
existence condition in Linnemann and Wang (1993) needs a sta-
bility factorization of the plant, which requires tedious derivation
of a Smith–McMillan form of the plant. The formula in Lin andWu
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(1998) requires checking of rank equality of two matrices consist-
ing of Kronecker products, which usually causes a dimension in-
flation problem, of residue matrices. The purpose of this article is
to present a simple existence condition of a block decoupling con-
troller when the plant, which may be rectangular, has unstable
simple poles and zeros that may be coincident. The only calcula-
tion needed is to obtain input and output zero direction vectors
from the coprime fractional descriptions of the plant.

Throughout the article, we consider only real rational matrices.
A rational matrix G(s), not necessarily proper, is said to be stable if
it is analytic in Re s ≥ 0. The notations C and C+ denote the com-
plex number plane and the closed right half plane, respectively.
The notations GT and σ ∗ denote the transpose of the matrix G and
the conjugate transpose of the vector σ , respectively. The degree
of a zero or a pole of a rational matrix is defined in the sense of
the Smith–McMillan degree.We adopt coprime polynomial matrix
fractional descriptions of rationalmatrices. Though all formulas are
described in terms of coprime polynomial fractions, the results de-
rived in this article hold with the coprime stable rational matrix
fractions.

2. Block decoupling problem and solvability condition

We consider a block decoupling problem for one-degree-of-
freedom controller configuration with unity output feedback. For
a given plant G(s) whose size is n × q, n ≤ q, the problem can
be described as finding stabilizing controllers C(s) that make the
input–output transfer matrix T (s) block-diagonal and invertible,
where T (s) is given by

T (s) = G(s)C(s)(I + G(s)C(s))−1. (1)

Here we assume that the plant G(s) is free of unstable hidden
poles. For ease of presentation, we consider the case that the block
diagonal T (s) has two blocks of T1(s) and T2(s) whose sizes are
n1 × n1 and n2 × n2, respectively, with n1 + n2 = n. In this
case, the input–output transfer matrix T (s) is said to be block-
decoupled with the partition (n1, n2). Since T (s) is required to be
block-diagonal and invertible, G(s) is assumed to have full row
rank. LetG(s) = A−1(s)B(s) = B1(s)A−1

1 (s)denote coprimepolyno-
mial matrix fractional descriptions. There always exist polynomial
matrices X(s), Y (s), X1(s) and Y1(s) such that

X1 Y1
−B A

 
A1 −Y
B1 X


=


A1 −Y
B1 X

 
X1 Y1
−B A


= I. (2)

It is known that the class of all stabilizing controllers is given
by C(s) = (Y + A1K)(X − B1K)−1, where K(s) is a stable rational
matrix. Therefore, the transfer matrix T (s) of block-decoupled
systems with internal stability must be of the form

diag{T1(s), T2(s)} = B1(s)Y1(s) + B1(s)K(s)A(s), (3)

and a block decoupling controller exists if there exists a stable K(s)
that makes B1Y1 + B1KA block-diagonal. The purpose of this article
is to present a simple existence condition of a block decoupling
controller when the plant G(s) has simple poles and zeros in C+.
The following lemmas are useful to prove Theorem 1. Lemma 1 is
a special case of Lemma 3.3 in Lin and Wu (1998). (It is noted here
that Lemma3.3 in Lin andWu (1998) is validwithout the inequality
condition p ≥ q.)

Lemma 1. Let σ and µ be given n × 1 column vectors. If σ ∗ µ = 0,
then there exists an n × n constant matrix P satisfying the equalities

σ ∗P = 0 and Pµ = µ. (4)

Lemma 2 (Park, 2009). Suppose that G(s) is a square stable rational
matrix with full normal rank and it has distinct simple zeros zi ∈

C+, i = 1 → m. Let σ ∗

i be an output zero direction vector of G(zi)
so that σ ∗

i G(zi) = 0 and G−1(s) be denoted by the partial fractional
expression

G−1(s) =

m
i=1

Mi

s − zi
+ F(s), (5)

where Mi is the residue matrix at zi and F(s) is a stable matrix. Then
the jth row of Mi is either zero or proportional to σ ∗

i . That is, the jth
row of Mi is of the form kijσ ∗

i , kij ∈ C.

In this article we assume that the plant G(s) has simple zeros
and poles in C+. It is well known that when the plant has no
coincident poles and zeros in C+, there exists a diagonal decoupling
controller. So it is assumed here that the plant has common poles
and zeros in C+.

Assumption 1. B1(s) has the simple zeros vi ∈ C+, i = 1 → m1
and A(s) has the simple zeros wj ∈ C+, j = 1 → m2, with
vi ≠ wj for any i and j. B1(s) and A(s) have common simple zeros
zk ∈ C+, k = 1 → m3.

Since vi, wj, and zk are simple zeros, there exist nonzero vectors
βi, αj, σk and µk such that

β∗

i B1(vi) = 0, A(wj)αj = 0 (6)

σ ∗

k B1(zk) = 0 and A(zk)µk = 0, (7)

for i = 1 → m1, j = 1 → m2 and k = 1 → m3. For a given vector
x = [x1 x2 · · · xn]T , let us define its two sub-vectors xa and xb as

xa = [x1 x2 · · · xn1 ]
T , xb = [xn1+1 xn1+2 · · · xn1+n2 ]

T . (8)

When there exist stable rational matrices T1(s) and T2(s) satis-
fying the equality in (3), it is suggestive to observe that thematrices
T1 and T2 satisfy some directional interpolation conditions. In fact,
pre-multiplyingβ∗

i = [β∗

ia β∗

ib] andσ ∗

k = [σ ∗

ka σ ∗

kb] to (3)with s = vi

and s = zk, respectively, and post-multiplying αj = [αT
ja αT

jb]
T and

µk = [µT
ka µT

kb]
T to (3) with s = wj and s = zk, respectively, yields,

with the aid of the equality B1(s)Y1(s) + X(s)A(s) = I which is
obtained from (2), that

β∗

iaT1(vi) = 0, T1(wj)αja = αja, (9)

σ ∗

kaT1(zk) = 0, T1(zk)µka = µka, (10)

β∗

ibT2(vi) = 0, T2(wj)αjb = αjb, (11)

σ ∗

kbT2(zk) = 0, T2(zk)µkb = µkb, (12)

for i = 1 → m1, j = 1 → m2 and k = 1 → m3. Also differentiat-
ing (3) yields that

diag{T ′

1(s), T
′

2(s)} = B′

1Y1 + B1Y ′

1 + B′

1KA + B1K ′A + B1KA′. (13)

Now pre-multiplying σ ∗

k and post-multiplying µk to this equation
with s = zk, we obtain an interpolation condition

σ ∗

kaT
′

1(zk)µka + σ ∗

kbT
′

2(zk)µkb = ρk, k = 1 → m3, (14)

where ρk = σ ∗

k B
′

1(zk)Y1(zk)µk. Now we present the main result.

Theorem 1. Under Assumption 1, a block decoupling controller with
the partition (n1, n2) exists if and only if

σ ∗

kaµka = 0 and σ ∗

kbµkb = 0, k = 1 → m3. (15)
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