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a b s t r a c t

This paper investigates cycles of periodically time-variant Boolean networks (PTVBNs). Some properties
of cycles of PTVBNs and the relationship between PTVBNs and time-invariant Boolean networks (TIBNs)
are revealed. It is shown that each cycle of a PTVBN corresponds to a common cycle of some TIBNs. And,
all the cycles of a PTVBN can be constructed by those of the corresponding TIBNs. Moreover, some results
on lengths of cycles of PTVBNs are derived. Finally, some examples are given to illustrate the obtained
theoretical results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Boolean network (BN) theory was first proposed by Kauffman
(1969) to describe cellular networks and genetic regulatory net-
works. In modeling of genetic regulatory networks, cycles are of-
ten associated with the behavior of cells (see Akutsu, Miyano, &
Kuhara, 1999; Aracena, Gonzalez, Zuniga, Mendez, & Cambiazo,
2006; Huang, 1999; Kauffman, Peterson, Samuelsson, & Troein,
2003 and Shmulevich, Dougherty, & Zhang, 2002). For Boolean net-
works (BNs), one of the most important topics is to find all the cy-
cles. In recent years the semi-tensor product of matrices, proposed
by Cheng, has been used to analyze BNs (Cheng, Qi, & Li, 2011).
It is a new technique that can convert logical dynamic equations
of BNs into discrete-time dynamic systems. With this new tech-
nique, the topological structures of time-invariant Boolean net-
works (TIBNs) can be revealed completely (Cheng & Qi, 2010).
Furthermore, many classical problems of control theory have been
extended to Boolean control networks (BCNs) such as controllabil-
ity, observability (Cheng & Qi, 2009), stabilization (Cheng, Qi, Li,
& Liu, 2011), Kalman decomposition (Cheng, Li, & Qi, 2010), dis-
turbance decoupling (Cheng, 2011) and optimal control (Zhao, Li,
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& Cheng, 2011). But for time-variant Boolean networks (TVBNs),
there are only a few results reported. In Li andWang (2012), reach-
ability and controllability are generalized to switched BNs, which
are actually a special kind of time-variant systems. In Zhang and
Zhang (2013), for general time-variant BCNs, a necessary and suf-
ficient condition for the controllability is obtained and a control
design algorithm is presented. For a kind of temporal BNs with
time-variant delays, controllability, optimal control and synchro-
nization problems are investigated (Li & Lu, 2013; Li & Sun, 2012).

It is well-known that, for the traditional dynamical systems,
time-variant systems have many essential properties different
from time-invariant systems. Specially, periodically time-variant
systems have some particular interesting dynamical behaviors.
And they exist widely in BNs such as the genetic regulatory net-
works with periodical external inputs to the genome (Ballesteros
& Luque, 2002), the switched BNs (Li & Wang, 2012) with period-
ical switching signals, the perturbed BNs with periodical function
perturbations (Xiao & Dougherty, 2007) and a class of BCNs with
dynamical controllers (Cheng, 2009). In the real world, many bi-
ological rhythms have a 24-h period related to sunlight and many
genetic regulatory networks are influenced by some periodicmed-
ical interventions. In different environments, the modeled BNs are
different. The physical meaning of PTVBNs just lies in the period-
ical model transition among different BNs. A natural problem is
how the periodical model transition affects the dynamical behav-
ior. This is just the motivation of this paper.

In this paper, we investigate cycles of PTVBNs. Some concepts
and basic dynamical properties, which are different from those of
TIBNs, are proposed in Section 2. In Section 3, the main results on
cycles of PTVBNs are given. The relationship between the cycles of
PTVBNs and the common cycles of a group of TIBNs is revealed,
with which an effective method for finding cycles is obtained. In
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Section 4, some examples are provided to illustrate the theoretical
results. Section 5 is the concluding remarks.

Throughout this paper, we use the following notations.
(1) Col(A): the set of all columns of matrix A. The ith column of A

is denoted by Coli(A).
(2) △m = {δi

m|i = 1, 2, . . . ,m}, where δi
m is the i-th column of

m × m identity matrix Im.
(3) Rm×r : the set of all the m × r real matrices. L ∈ Rm×r is

called a logical matrix if Col(L) ⊂ △m. For simplicity, denote
L = [δ

i1
m, δ

i2
m, . . . , δir

m] by δm[i1, i2, . . . , ir ]. Denote the set of
m × r logical matrices by Lm×r .

(4) D = {True = 1, False = 0}. Each element in D is identified
with a vector as True ∼ δ1

2 and False ∼ δ2
2 . Thus, D can be

regarded as △2 = {δ1
2, δ

2
2}.

Definition 1 (Cheng, Qi, Li, 2011). Let A ∈ Rm×n and B ∈ Rp×q.
Denote by α = lcm(n, p) the least common multiple of n and
p. The left semi-tensor product of A and B is defined as A n B =

(A ⊗ I α
n
)(B ⊗ I α

p
).

2. Cycles of PTVBNs

Consider the PTVBN described by

xi(t + 1) = f σ(t)
i (x1(t), . . . , xn(t)), (1)

where σ(t) = t%k + 1 is a periodic function with period k, xi ∈ D

a logical variable and f ji a logical function for every i = 1, 2, . . . , n
and j = 1, 2, . . . , k. Regard each xi as an element of ∆2 and take
the semi-tensor product x= nn

i=1 xi ∈ ∆2n . Then by the procedure
given in Cheng, Qi, Li (2011), system (1) can be converted into
an algebraic form xi(t + 1) = Mσ(t)

i x(t), where Mσ(t)
i ∈ L2×2n .

Multiplying those equations together yields the algebraic form

x(t + 1) = Lσ(t)x(t). (2)

Conversely, the logical system (1) can be uniquely determined by
(2). Let Lt+1 = Lt%k+1 for any t ≥ k, we can simply write (2) as

x(t + 1) = Lt+1x(t). (3)

Definition 2. Consider PTVBN (1). A state x0 ∈ △2n is called
a fixed point, if x(t) = x0 for any t ≥ 0. A sequence
{x(0), x(1), . . . , x(t), . . .}determined by (1) is called a cycle if there
exists an integer s > 0 such that x(t + s) = x(t) for any t ≥ 0. We
call sequence {x(0), x(1), . . . , x(t), . . .} determined by (1) a cycle
with length s, if
(i) x(t + s) = x(t) for any t ≥ 0;
(ii) for any 0 < T < s, there exists t̃ such that x(t̃ + T ) ≠ x(t̃).

Obviously, a fixed point is a cycle with length 1.
In this paper, we simply denote by {x1, x2, . . . , xs} the periodic

sequence S = {x1, x2, . . . , xs, x1, x2, . . . , xs, . . .}. Let

C = {x̃(0), x̃(1), . . . , x̃(s − 1)} (4)

be a cycle of (1). By Definition 2, the length of C is less than or equal
to s. Moreover, for simplicity, we also call a cycle of (2) as a cycle of
Lσ(t).

Lemma 1. Consider the PTVBN (1) with algebraic form (2). If
x(mk) = x(0) for some non-negative integer m, then x(mk+l) = x(l)
for any l ≥ 0.

Proof (Mathematical Induction). First, as l = 0,wehave x(mk+l) =

x(l). Next, with the assumption x(mk+ l− 1) = x(l− 1), we try to
prove x(mk + l) = x(l). Let r = (l − 1)%k + 1. Then, by (3) and the
induction hypothesis, it follows that x(mk+ l) = Lrx(mk+ l−1) =

Lrx(l − 1) = x(l). �

Proposition 1. Consider the PTVBN (1) with algebraic form (2). The
following statements hold:

(i) A state x0 ∈ △2n is a fixed point of system (1) if and only if
Lix0 = x0 for every i = 1, 2, . . . , k.

(ii) The periodic sequence C given by (4) is a cycle of PTVBN (1) if and
only if

x̃(t + s) = x̃(t), ∀ 0 ≤ t ≤ ks/(s, k) − s. (5)

(iii) The periodic sequence C given by (4) is a cycle of PTVBN (1)with
length s if and only if (5) holds and

∀ 0 < T < s, ∃0 ≤ t̄ ≤ s − 1, s.t.x̃(T + t̄) ≠ x̃(t̄). (6)

Proof. (i) By (2), this result is easily obtained.
(ii) The necessity is obvious by Definition 2. Here, we prove

the sufficiency. Denote the greatest common divisor (s, k) by β
and let k = k1β, s = s1β , where k1 and s1 are positive integers.
Then k1s = s1k. In the following, we use the Second Principle
of Mathematical Induction to prove that x̃(t + s) = x̃(t) for any
t ≥ 0. First, condition (5) implies that x̃(t + s) = x̃(t) for any
0 ≤ t ≤ (k1 − 1)s. Let t ′ > (k1 − 1)s in the following. With the
assumption that x̃(τ + s) = x̃(τ ) for all τ < t ′, we try to prove
x̃(t ′ + s) = x̃(t ′). Since t ′ + s > k1s, we let

t ′ + s = pk1s + r = ps1k + r, (7)

where p and r are non-negative integers, and r satisfies 0 ≤ r <
k1s. Considering t ′ − s < t ′, by the induction hypothesis and (7),
we have

x̃(t ′) = x̃(t ′ − s) = x̃(t ′ − 2s) = · · · = x̃(r). (8)

Moreover, (5) implies that x̃(0) = x̃(s) = x̃(2s) = · · · = x̃(k1s) =

x̃(s1k). Thus, by (7) and Lemma 1, we have

x̃(t ′ + s) = x̃(pk1s + r) = x̃(ps1k + r) = x̃(r). (9)

It follows from (8) and (9) that x̃(t ′) = x̃(t ′+s). Thus, x̃(s+t) = x̃(t)
for any t ≥ 0. Then by Definition 2, the sufficiency is proved.

(iii) ByDefinition 2 and the result in (ii), the sufficiency is proved
directly. Now, we prove the necessity. We only need to prove (6).
For any 0 < T < s, by (ii) of Definition 2, there exists t̃ such
that x̃(t̃ + T ) ≠ x̃(t̃). Then there exist integers p̄ and t̄ such that
t̃ = p̄s + t̄ (0 ≤ t̄ ≤ s − 1). From Definition 2, it follows that
x̃(t̃ + T ) = x̃(p̄s + t̄ + T ) = x̃(t̄ + T ) and x̃(t̃) = x̃(p̄s + t̄) = x̃(t̄).
Thus, there exists 0 ≤ t̄ ≤ s − 1 such that x̃(t̄ + T ) ≠ x̃(t̄). �

Remark 1. For TIBNs, if the cycle C shown in (4) has length s,
it is required that x̃(0), x̃(1), . . . , x̃(s − 1) are pairwise distinct
(see Definition 5.4 in Cheng, Qi, Li, 2011). But for PTVBNs, this
requirement is not necessary. For example, let n = 1, f 1(x) = x
and f 2(x) = ¬ x for (1). Then 0 → 0 → 1 → 1 is a cycle
with length 4, while it is not pairwise distinct. This is an important
property of PTVBNs different from that of TIBNs. If the considered
BN is time-invariant, i.e. k = 1, then (5) exactly becomes the first
condition x̃(0) = x̃(s) in Definition 5.4 of Cheng, Qi, Li (2011).
Moreover, (6) and x̃(0) = x̃(s) imply that x̃(0), x̃(1), . . . , x̃(s −

1) are pairwise distinct, which is just the other condition in the
definition of cycles of TIBNs. Proposition 1 reveals some basic
properties of cycles of PTVBNs.

3. Main results

In this section, we focus on revealing the relationship between
the cycles of PTVBNs and the common cycles of a group of TIBNs.
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