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An asymptotically stabilizing sequential distributed model predictive control (MPC) of a 3D tower crane is
proposed. Stability is ensured by employing three locally stabilizing MPC control laws. In the case of Lipschitz
continuous local MPC control laws, a terminal cost and a terminal set constraint are used as stabilizing ingredients
while robust control invariant feasible set is used as an additional constraint to guarantee recursive feasibility.
On the other hand, in the case of an arbitrary cost function, switching to a robust dual-mode local control law is

used inside of the terminal set to guarantee asymptotic stability.

1. Introduction

The primary role of a crane control system is to ensure the quick
and safe transfer of a payload, while at the same time respecting various
operational and technical constraints. During the transfer of the payload,
an oscillatory motion is triggered by the crane’s inertial forces or by
external excitation. Suppression of this oscillatory payload motion is
necessary to ensure a safe load transfer, but also to reduce dynamic loads
on the crane structure. In general, this can be achieved by employing
either open-loop or closed-loop solutions (Abdel-Rahman, Nayfeh, &
Masoud, 2003).

Open-loop solutions are still widely used for suppressing the oscil-
lations caused by the crane’s inertial forces since they do not require a
swing sensor and they are relatively simple to implement.

As a typical representative of the open-loop solutions, the input
shaping approach modifies the operator command to reduce the pay-
load oscillations using information about the crane’s natural frequency
and damping ratio. Despite being an open-loop solution, it allows
for introducing a certain level of robustness to uncertainty in natural
frequency (Blackburn et al., 2010; Kuo & Kang, 2014; Singhose, 2009).
Another open-loop solution is open-loop optimal control, which is used
not only to suppress crane oscillations but also for optimal motion plan-
ning in the sense of tracking error, minimum time, energy efficiency,
or safety, subject to constraints (Wu & Xia, 2014; Zhang, Fang, & Sun,
2014). Common to all of the open-loop solutions is their ineffectiveness
at suppressing externally induced oscillations.

On the other hand, closed-loop solutions are proven to be effective
at suppressing both the oscillations caused by the inertial forces and by
external sources. Closed-loop solutions may be in the form of a simple
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linear control which assumes non-simultaneous sequential movements
of the payload along multiple axes (e.g. payload hoisting/lowering,
horizontal linear/rotary motion) (Sorensen, Singhose, & Dickerson,
2007) and sometimes combined with artificial intelligence techniques
to compensate for model uncertainties (Yu, Li, & Panuncio, 2014).

Advanced approaches to closed-loop crane control include feedback
linearization (Lee, Dang, Moon, Kim, et al., 2013) as well as adaptive
and nonlinear control algorithms which can deal with the simultaneous
movement of the payload along multiple axes and model uncertainties
while guaranteeing closed-loop stability (Sun, Fang, Chen, & He, 2015;
Sun, Fang, Chen, Lu, & Fu, 2016; Xi & Hesketh, 2010).

In some cases, a hybrid solution is used, combining an open-
loop generated crane trajectory as a reference signal and closed-loop
controller for handling external disturbances (Kolar, Rams, & Schlacher,
2017).

However, most of the classical closed-loop solutions for crane control
suffer from the same problem, which is the inability to account for
system constraints stemming from technical limitations and safety
requirements in a systematic way. By systematically taking into account
its technical constraints, a crane can be fully utilized, which results in
improved performance and may result in a prolonged lifetime. Model
Predictive Control (MPC) is a commonly used methodology that allows
optimizing the control system performance while at the same time
respecting system constraints. At each time instant, a finite-horizon
optimal control problem is solved subject to constraints on the control
input and states, with the current state used as an initial condition.
The result of the optimization is an optimal finite-horizon control
sequence. The first input from the sequence is applied to the plant.
The procedure is then repeated in a receding horizon manner. The
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MPC methodology is already used to optimize tracking performance
and/or energy efficiency, subject to constraints, of gantry cranes (Su
et al., 2010), overhead cranes (Chen, Fang, & Sun, 2016; Kapernick &
Graichen, 2013; Schindele & Aschemann, 2011; Vukov et al., 2012; Wu,
Xia, & Zhu, 2015), and rotary cranes (Arnold, Sawodny, Hildebrandt, &
Schneider, 2003; Barisa et al., 2014; Bock & Kugi, 2014; Egretzberger,
Graichen, & Kugi, 2012; Graichen, Egretzberger, & Kugi, 2010).

Due to the finiteness of the horizon, MPC does not necessarily
guarantee stability, nor recursive feasibility (Mayne, Rawlings, Rao,
& Scokaert, 2000), which may compromise the system’s safety as the
existence of the solution to the optimization problem is not guaranteed.

In general, guaranteeing stability and recursive feasibility may neg-
atively impact the overall system performance and result in a conserva-
tive control law. Arnold, Sawodny, Neupert, and Schneider (2005) and
Neupert, Arnold, Schneider, and Sawodny (2010) were among the first
who recognized this problem and provided such guarantees using the
zero state terminal constraint.

On the other hand, a nonlinear suboptimal MPC approach to crane
control is presented in Bock and Kugi (2014), Egretzberger et al. (2012),
Graichen et al. (2010) and Képernick and Graichen (2013), without an
explicit stability analysis but suggesting that stability without terminal
constraint can be guaranteed using the approach proposed in Graichen
and Kugi (2010), which provides guarantees only for the input con-
straints.

Input constraints are also handled in Barisa et al. (2014), where
MPC is used to generate the optimal reference signal for the underlying
position controllers. To guarantee that the generated reference signal
will converge to the desired reference, a decaying stage cost is used.

A different approach to guaranteeing the stability in the presence of
both state and input constraints for a 3D tower crane has been proposed
in Ile$ (2015) and Iles, MatuSko, and Koloni¢ (2014). A dual-mode
MPC with a nonzero terminal constraint is used for controlling a tower
crane with the crane modeled in a cascaded form, where the motions
of a tower crane are considered separately, with the couplings between
them treated as a variation of the individual system’s parameters. Such
a model form enables a sequential solving of three local but coupled
finite-horizon optimal control problems. As such, the proposed solution
belongs to the class of a so-called sequential distributed model predictive
control (Christofides, Scattolini, de la Pena, & Liu, 2013). In Iles$ et al.
(2014), closed-loop stability is ensured by using a worst case terminal set
and an associated terminal cost. The recursive feasibility is guaranteed
by keeping the system states in a worst case control invariant feasible
set while the asymptotic stability is ensured by switching to a robustly
stabilizing control law inside of the terminal set. However, only a sketch
of the proof of stability and recursive feasibility of the proposed method
has been given and the proposed method is limited to a quadratic cost
function and a polytopic linear parameter varying (LPV) model of the
crane.

Although sequential distributed model predictive crane control
might be suboptimal, it enables efficient solving and guarantees the
stability of each local MPC problem subject to constraints on both the
control input and the states. By using a quadratic cost function and linear
time-varying dynamics subject to convex constraints on the control
input and states, each local optimization problem can be written as a
convex quadratic program.

This paper builds on the results presented in Iles (2015), Iles et
al. (2014) and provides more general and less conservative stabilizing
ingredients for sequential distributed model predictive control of a 3D
tower crane, with a formal proof for two different cases. In the first
case, Lipschitz continuous local MPC control laws are assumed. In this
case, a terminal set, a terminal cost, and a robust control invariant
initial feasible set are proposed as stabilizing ingredients. However,
unlike in Iles (2015) and Iles et al. (2014), in the proposed approach
switching to a robustly stabilizing control law is not needed in the
case of Lipschitz continuous MPC, which results in a less conservative
control law for the local subsystem. For the case of an arbitrary cost
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Fig. 1. Model of a tower crane.

function, local MPC controllers are not necessarily Lipschitz continuous.
In that case, asymptotic stability is ensured by switching to a robust
stabilizing control law inside of the terminal set. This second case is a
generalization of the results presented in Iles et al. (2014) which enables
using more complex models of the crane and an arbitrary cost function.

This paper is organized as follows. In Section 2 a simplified mathe-
matical model of a 3D tower crane model in a cascaded form is given.
The proposed sequential distributed MPC based control approach is
presented in Section 3. In Section 4 implementation details are given. In
Section 5 simulation and experimental results are presented. Section 6
concludes the paper.

2. Mathematical model of a tower crane

By far the most widely used control oriented crane model is the so-
called lumped mass model (Abdel-Rahman et al., 2003). It assumes that
the tower crane, shown in Fig. 1, consists of a massless hoisting line
and a trolley—jib support mechanism, while the payload is modeled as a
point mass. The jib rotates in a horizontal plane, while the trolley moves
along the jib. Together with the hoisting mechanism, the tower crane
enables three degrees of freedom.

The nonlinear mathematical model of the crane’s motion can be
derived via Lagrange’s equations, by defining the total potential and
kinetic energy of the system as functions of generalized coordinates:
jib angular position 6, swing angle ¢, trolley position x, swing angle «,
and cable length L. In this paper the simplified control oriented model
presented in Altaf (2010) and Omar (2003), which was derived from
the full nonlinear model using a small-angle approximation and the
assumption that the rates of change of the cable length, trolley position
and jib position have the same order of magnitude as the swing angles
and their rates of change, (§ ~ 0,x, ~ 0,L ~ 0), is adopted. As a
result, the crane model is represented in a cascaded form consisting of
three separate subsystems, with the coupling between them treated as
a variation in system parameters. The presented model simplification is
the Taylor-series linearization of each subsystem around a steady state
with constant positions of the other subsystems.

The hoisting dynamics is represented by a linear time-invariant
model as follows:
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