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A B S T R A C T

Physical human–robots cooperation is desirable for future robotic applications while poses the fundamental
problem of how to ensure personnel safety. Dynamic impact and quasi-static clamping are two common scenarios
that could potentially lead to human injuries and should be detected as sensitive as possible. Combining insights
from of the extended state observer (ESO) and robot dynamics, an efficient collision detection method based on
only proprioceptive sensors (encoders and torque sensors) is introduced. In addition to detection, the proposed
method provides magnitude and direction information of force signals covering a general class of actuator faults.
Simulations give a quantitative comparison between the proposed scheme and the widely used method based
on general momenta. Experimental results with a 7-DOF collaborative robot further illustrate the effectiveness
of the proposed method. The collisions occurring in the form of dynamic impact as well as quasi-static clamping
are verified.

1. Introduction

Physical cooperation between human and robot has become a topic
of major focus in robotics. A primary concern of a robot designed for
cooperation with human or uncertain environment is that it should
not pose any threat to human in any cases (Heinzmann & Zelinsky,
2003; Ikuta, Ishii, & Nokata, 2003). The close human–robot interaction
(HRI) inevitably lead to physical contact, which is usually divided into
two fundamental groups: dynamic loading and quasi-static loading.
An overview of the potential injury threats from robot manipulator to
human is summarized in Haddadin and Hirzinger (2009). The primary
task in safety protection is to detect the collision occurrence and identify
its position and magnitude (Haddadin, Luca, & Albu-Schäffer, 2017).

The existing detection strategies can be separated into two sub-
classes (Hilbe et al., 1996): model-independent methods and model-
based methods. As its name implies, model-independent methods take
the advantage of being independent of a specific model. They are
generally based on the analysis of signals involved in robot control, such
as instantaneous variation of position error or control input signals (Je,
Baek, & Min, 2011; Jung, Koo, Choi, & Moon, 2014). These signals are
related directly to the structure and parameters of the controllers, so
that it is difficult to generalize this class of methods to different control
architectures (Makarov, Caldas, Grossard, Rodriguez-Ayerbe, & Dumur,
2014). Benefiting from the progress in machine learning, the detection
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algorithms based on neural network (NN) (Sharkawy, Koustoumpardis,
& Aspragathos, 2018; Silva, Silva, & Santos, 2014), support vector
machine (SVM) (Narukawa, Yoshiike, Tanaka, & Kuroda, 2017) or
Fuzzy system (Dimeas, Avendañovalencia, & Aspragathos, 2015; Xia,
Wu, Li, & Liu, 2016) reveal an important trend for model-independent
methods. These intelligent agents are able to learn to identify accidental
collision from labeled data with even less model information. However,
none of these algorithms can give a completely accurate prediction of
collisions (usually under 95%), and the collection of training data is very
problematic in practices.

On the other hand, parameter estimation and observer-based tech-
niques belong to the second class. The detection schemes with parameter
estimation rely on the comparison between the predetermined and
the identified parameters. Generally, they need appropriate system
excitation and thus work only with certain types of impact (Frey-
ermuth, 1991). Observer-based methods require no special excitation
and therefore can handle more scenarios of collision. In addition, most
of the observer-based methods are able to work in parallel to the
robot controller. These strategies usually comprise two steps: (a) the
generation of a diagnostic signals carrying the collision signature, and
(b) the comparison between signals and preset thresholds to determine
if the fluctuation is due to a collision or just the system noise.

The diagnostic signal is termed as the residual signal. In classical
model-based methods, residuals are calculated by comparing the current
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parameter estimates with their nominal values, i.e., the difference
between measured and estimated joint torque (Caccavale & Walker,
1997; Freyermuth, 1991). As an enhancement of this scheme, the
generalized momenta-based (GM) method removes the requirement of
acceleration computation and thus significantly reduces the influence
of measurement noise (De Luca & Mattone, 2003; Luca, Albu-Schaffer,
Haddadin, & Hirzinger, 2007). An observer built with an internal
state of the generalized momentum 𝒑 = 𝑴(𝒒)�̇� realizes the collision
detection in this scheme. It takes the joint torque, link position, and
link velocity as inputs and generates a first-order filtered version of
external forces (Haddadin, Albu-Schaffer, Luca, & Hirzinger, 2008).
Based on the idea of torque filter, another method is designed and proves
to have the similar benefits of acceleration free as well as controller
independence (Dixon, Walker, Dawson, & Hartranft, 2000).

Due to the intuitive design and reliable performance, the GM method
is widely adopted by various robotic applications for safety issues (Cho,
Kim, Kim, Song, & Kyung, 2012; De Luca, Flacco, Bicchi, & Schiavi,
2009; Lee, Kim, & Song, 2014; Luca & Mattone, 2006; Tian, Chen,
Jia, Wang, & Li, 2017). However, in practice, it is found sensitive
to modeling errors and disturbances from robot joint actuators. The
collision detection threshold must be raised to prevent false alarms,
which significantly decreases the detection sensitivity. To overcome this
problem, a band-pass filter is introduced to separate collision torque
from unmodeled dynamic effects and measurement noise (Ho & Song,
2013). This method is based on the assumption that due to the structure
inertia, motion of a robot and its actuators is limited to low frequency.
Thus a high pass filter is capable of suppressing those low frequency
signals while reserving the abrupt changes resulting from impact (Lee &
Song, 2015). This filtered residual signal can provide a reliable indicator
for dynamic impact, while the quasi-static threats like squeezing and
clamping are totally overlooked. Furthermore, the band-pass filter may
distort the residual signals, which would result in a deformed estimation
of the magnitude of contact forces.

This paper is motivated by the requirement of sensitive collision
detection and identification in HRI. Starting with the robot dynamic
model, the extended state observer (ESO) from the active disturbance
rejection control (ADRC) framework is introduced for fast and robust
contact force detection. The main contributions of this work are the
modified ESO (MESO) algorithm for whole-body collision detection
and its application to a practical robot for physical HRI. Residual
vectors generated by the MESO contain information of not only the
presence, but also the location, magnitude and orientation of a collision.
Compared with classical model-based methods, the MESO circumvents
the need for acceleration estimation. It is robust to torque disturbances
and thus gives residual estimation with more accuracy.

For practical verification, blunt impact experiments with a human
volunteer are conducted on a 7-DOF dexterous collaborative robot
arm (DCRA) (Ren, Dong, Wu, Wang, & Chen, 2017) developed by
our lab. As well as dynamic collision, we analyze the problem of the
quasi-static constrained impact, which poses a serious threat even with
lightweight robots. The results prove that the MESO is able to suppress
the disturbances from joint actuators and respond rapidly to accidental
contacts. We evaluate the collision force during the impact tests and
find that with a combination of MESO and the simplest ‘‘emergency
stop’’ strategy, the robot is unlikely to cause damage to human in both
dynamic and quasi-static collision.

The paper is organized as follows. In Section 2, some preliminaries
relative to our study are presented. Section 3 describes the design of the
proposed method motivated by the idea of ESO combining the analysis
of robot model. To make this paper self-contained, a generalized review
of the widely used GM method is included. Section 4 is devoted to the
comparison between the MESO and the GM method with respect to
the tracking performance in simulation. In Section 5, experiments are
carried out to illustrate the effectiveness of the MESO in a collaborative
robot concerning quasi-static and dynamic loading. We evaluated the
detection sensitivity by using an external force/torque sensor.

2. Preliminaries

2.1. Robot manipulator model

The analytical model for an n-degree-of-freedom (DOF) robot ma-
nipulator can be written in joint space as the following form:

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) = 𝝉 + 𝝉𝑒𝑥𝑡 (1)

where 𝒒, �̇�, �̈� ∈ 𝑹𝑛 represent the link angular position, velocity, and
acceleration. 𝑴(𝒒) ∈ 𝑹𝑛×𝑛 denotes the positive-definite, symmetric
inertia matrix. 𝑪(𝒒, �̇�) ∈ 𝑹𝑛×𝑛 and 𝒈(𝒒) ∈ 𝑹𝑛 denote the Centripetal-
Coriolis and gravitational effects. 𝝉𝑒𝑥𝑡 ∈ 𝑹𝑛 is the external torque vector
due to physical contact with the environment which could act as an
indicator of collision events.

𝝉 ∈ 𝑹𝑛 is the joint torque generated by robot joint actuators. It can
be measured directly from joint torque sensors or inferred by motor
currents. It is noteworthy that depending on specific robot controllers,
the joint torque may have varying degrees of disturbance from actuators.
The actuator in each joint of a robot usually consist of a servo motor and
a transmission system with transmission flexibility, motor inertia, and
friction (Spong, 1987; Spong, Vidyasagar, Pota, & Alberts, 1994)
{

𝑩𝑎�̈� +𝑫𝑎�̇� + 𝝉 = 𝝉𝑚 − 𝝉𝑓
𝝉 = 𝑲𝑎(𝜽 − 𝒒) (2)

where 𝑩𝑎 , 𝑫𝑎 , 𝑲𝑎 ∈ 𝑹𝑛×𝑛 are the diagonal, positive definite motor rotor
inertia matrices, damping and joint stiffness of the actuator respectively.
𝝉𝑚 ∈ 𝑹𝑛 represents the electromagnetic torque of motors considered as
the system input. 𝜽 ∈ 𝑹𝑛 is the motor positions and it is measured by
motor-side encoders. 𝝉𝑓 ∈ 𝑹𝑛 is the friction torque. Combination of Eqs.
(1) and (2) lead to a complex model of flexible joint robot. Instead of
working out its mechanism, we consider the actuator dynamics model
Eq. (2) as disturbances acting on the dominant rigid robot model Eq. (1).

The robot model given in Eq. (1) has the following well-known
property that is utilized in the subsequent analysis.

Property 1. The matrix �̇�(𝒒) − 2𝑪(𝒒, �̇�) is skew-symmetry (Lewis,
Abdallah, & Dawson, 1993), and so it follows that

�̇�(𝒒) = 𝑪(𝒒, �̇�) + 𝑪𝑇 (𝒒, �̇�). (3)

2.2. Strategy of extended state observer

As a unique observer design, the extended state observer was origi-
nally proposed by Han (2009). The main idea of the observer is to use
an augmented state vector for nonlinear disturbance estimation. With
consideration of a general model of a second-order MIMO system

�̈� = 𝒇 (𝑡, 𝒚, �̇�,𝒘) + 𝑩𝒖, (4)

where 𝒚 ∈ 𝑹𝑚 is the state vector and 𝑩𝒖 ∈ 𝑹𝑚 is the system input,
𝒘 ∈ 𝑹𝑚 is an external unknown input, 𝒇 represents the total disturbance
including internal dynamics and external disturbances. Based on the
idea of internal state extension, this plant can be augmented as

⎧
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⎪

⎨
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⎪

⎩

�̇�1 = 𝒙2
�̇�2 = 𝒙3 + 𝑩𝒖
�̇�3 = 𝒇 (𝑡, 𝒚, �̇�,𝒘)
𝒚 = 𝒙1

, (5)

where the total disturbance 𝒇 is considered as an extended state 𝒙3.
Here 𝒇 and its derivative 𝒇 are assumed unknown. Now it is possible to
estimate 𝒇 by using a simple state estimator. The ESO has been shown
to be capable of handling different types of nonlinear disturbances
without adjusting the structure or parameters (Yang & Huang, 2009),
and the observer error monotonically decreases with the observer
bandwidth (Zhou, Shao, & Gao, 2009). The following property declares
the scope of disturbance 𝒇 that can be estimated by a linear ESO with
bounded error.
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