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A B S T R A C T

A framework that embraces a state-of-the-art sensor, multi-objective dynamic optimization, nonlinear state
estimation and control, is designed and implemented to achieve target weight-average molecular weight
trajectories. The Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) is combined
for the first time with a nonlinear state observer for full polymer characterization and signal processing. A
hybrid variation of the discrete-time extended Kalman filter (ℎ-DEKF) is formulated based on an auto-tuning
procedure that uses a stochastic global optimization technique. A number of optimal policies are generated and
experimentally tested. Results are provided through investigations into the free-radical aqueous polymerization
of acrylamide using potassium persulfate as initiator.

1. Introduction

The competitive landscape of the chemical industry requires prac-
tical tools for the Smart Manufacturing of chemicals with desired final
properties. Polymers represent a large part of this industry and their
synthesis involves complex processes. End manufacturers require raw
polymeric materials with uniform characteristics for industrial applica-
tions. In the past decades, techniques and strategies for state estimation
(Hedengren & Eaton, 2015; Kozub & MacGregor, 1992; Nicholson,
López-Negrete, & Biegler, 2014; Romagnoli & Sanchez, 1999; Schuler &
Schmidt, 1992; Srinivasan, Kasthurikrishnan, Cooks, Krishnan, & Tsao,
1995; Weiss, Romagnoli, & Islam, 1996) and control (Cho, Chung, &
Lee, 2000; Eaton & Rawlings, 1990; Ghadipasha, Romagnoli, Tronci, &
Baratti, 2015; Norquay, Palazoglu, & Romagnoli, 1998; Romagnoli &
Palazoglu, 2005) have evolved for solving industrial problems in chem-
ical reactors and unit operations. Advanced manufacturing techniques
are important as they allow the efficient use of feedstock materials,
energy, and labor while also improving safety in a chemical facility.
Particularly in the polymer industry the combination of mechanistic
model complexity and inadequate real-time characterization techniques
present crucial challenges.

A major goal in polymer synthesis is the achievement of a target
molecular weight distribution (MWD) as it leads to desired physico-
chemical properties. Indeed, MWD is fundamental in the sense that
it influences physical, rheological, and thermal characteristics of final
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products such as thermal stability, strength, and capability of materials
for being processed (Gentekos, Dupuis, & Fors, 2016; Heidemeyer &
Pfeiffer, 2002; Isayev, 2011). External disturbances such as temperature,
degree of mixing, concentration and purity of reactants affect final
MWDs due to the sensitive molecular structure of polymers (McKeen,
2014). The lack of reliable real-time techniques for monitoring MWD,
weight average molecular weight (𝑀𝑤) and number average molecular
weight (𝑀𝑛) makes it difficult to directly control these properties.

A recent state-of-the-art smart sensor for polymerization processes,
known as the ACOMP system, provides real-time measurements of
different polymer properties and follows the evolution of monomer
and polymer concentration along a liquid-phase polymerization (Flo-
renzano, Strelitzki, & Reed, 1998; McAfee et al., 2016; Reed & Alb,
2013). Some examples of the ACOMP applications include the moni-
toring of polyacrylamide synthesis (Giz, Catalgil-Giz, Alb, Brousseau,
& Reed, 2001), prediction of molecular weight in semi-batch free-
radical homopolymer reactors (Kreft & Reed, 2009a), and predictive
control of average composition and MWDs in semi-batch free-radical
copolymerization reactors (Kreft & Reed, 2009b). Although state-of-the-
art sensors such as the ACOMP system can overcome many needs, the
available measurements are not enough for a complete understanding of
the dynamic evolution of the system. Therefore, the implementation of
a nonlinear observer is necessary for better comprehension of the evolu-
tion of the state variables as well as to improve available measurements.
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Notation

𝐴𝑑 Pre-exponential factor for initiator decomposition,
[min−1]

𝐴𝑝 Pre-exponential factor for propagation
[m3 mol−1 min−1]

𝐴𝑡𝑑 Pre-exponential factor for termination by dispropor-
tionation [m3 mol−1 min−1]

𝐶𝑖 Concentration of initiator inside the reactor, [mol
m−3]

𝐶𝑖𝑓 Concentration of initiator in the initiator flow rate,
[mol m−3]

𝐶𝑚 Concentration of monomer inside the reactor, [mol
m−3]

𝐶𝑚𝑓 Concentration of monomer in the monomer flow rate,
[mol m−3]

𝐶𝑠 Concentration of solvent inside the reactor, [mol m−3]
𝐶𝑠𝑖𝑓 Concentration of solvent in the initiator flow rate,

[mol m−3]
𝐶𝑠𝑚𝑓 Concentration of solvent in the monomer flow rate,

[mol m−3]
𝐸𝑑 Activation energy in initiator decomposition, [J

mol−1]
𝐸𝑝 Activation energy in propagation, [J mol−1]
𝐸𝑡𝑑 Activation energy in termination by disproportiona-

tion, [J mol−1]
𝑒𝑓 Initiator efficiency, dimensionless
𝐹𝑖 Flow rate of initiator to the reactor, [m3 min−1]
𝐹𝑚 Flow rate of monomer to the reactor, [m3 min−1]
𝐹𝑜𝑢𝑡 Extraction flow rate out of the reactor for sampling

purposes, [m3 min−1]
𝑔 Chain length distribution, dimensionless
𝑘𝑑 Initiator decomposition rate constant, [min−1]
𝑘𝑓𝑚 Chain transfer to monomer rate constant,

[m3 mol−1 min−1]
𝑘𝑓𝑠 Chain transfer to solvent rate constant,

[m3 mol−1 min−1]
𝑘𝑝 Propagation rate constant, [m3 mol−1 min−1]
𝑘𝑡𝑐 Termination by combination rate constant,

[m3 mol−1 min−1]
𝑘𝑡𝑑 Termination by disproportionation rate constant,

[m3 mol−1 min−1]
𝑚 Upper bound for chain length interval, dimensionless
𝑀𝑛 Number average molecular weight, [kg mol−1]
𝑀𝑤 Weight average molecular weight, [kg mol−1]
𝑛 Lower bound for chain length interval, dimensionless
𝑁𝑖 Total amount of initiator inside the reactor, [mol]
𝑁𝑖0 Initial amount of initiator inside the reactor, [mol]
𝑁𝑚 Total amount of monomer inside the reactor, [mol]
𝑁𝑚0 Initial amount of monomer inside the reactor, [mol]
𝑁𝑚𝑓 Total amount of monomer added to the reactor from

the flow rates, [mol]
𝑁𝑠 Total amount of solvent inside the reactor, [mol]
𝑁𝑠0 Initial amount of solvent inside the reactor, [mol]
𝑃0 Concentration of live polymer in the reactor, [mol

m−3]
𝑅𝑔𝑎𝑠 Ideal gas constant, [J mol−1K−1]
𝑇 Temperature of the reactor, [K]
𝑡 Time, [min]
𝑉 Volume of the material inside the reactor, [m3]
𝑤𝑚 Molecular weight of monomer, [kg mol−1]
𝑤𝑖 Molecular weight of initiator, [kg mol−1]
𝑤𝑠 Molecular weight of solvent, [kg mol−1]
𝑋 Monomer conversion, dimensionless

Greek letters

𝜆0 Zeroth moment, [mol m−3]
𝜆1 First moment, [mol m−3]
𝜆2 Second moment, [mol m−3]
𝛼 Probability of propagation, dimensionless
𝜌𝑚 Mass density of monomer, [kg m−3]
𝜌𝑖 Mass density of initiator, [kg m−3]
𝜌𝑠 Mass density of solvent, [kg m−3]

Even though direct measurements from the ACOMP system provide
an accurate assessment of the system, the complete state vector can
seldom be measured. In addition, mathematical models often become
increasingly inaccurate as the reaction proceeds. Thus, a well-adjusted
combination of both experimental measurements and mathematical
models allows a better understanding of the system dynamics. Devel-
oped more than half a century ago, the Kalman filter (KF) (Kalman,
1960; Kalman & Bucy, 1961) provides an elegant basis for incorporating
both the available data and a mechanistic model of the process of
interest (Qin, 2014). The KF addresses the problem of estimating states
of a discrete-time controlled process governed by a linear stochastic
difference equation. The assumptions of linearity for both the measure-
ments and the state transitions are crucial for its correctness (Simon,
2006). Nonetheless, state transitions and measurements are rarely linear
in practice. For nonlinear systems, the extended Kalman filter (EKF)
is one the most broadly utilized state estimators for the chemical
process industry (Hashemi, Kohlmann, & Engell, 2016). A particular
configuration of the EKF is the discrete-time extended Kalman filter
(DEKF) (Simon, 2006). The method combines the nonlinear model and
its linearization to compute the state estimates.

In polymeric systems, many authors have studied a variety of state
estimators. Kozub and MacGregor (1992) considered different EKF
configurations for semi-batch polymerizations. Ellis, Taylor, and Jensen
(1994) implemented a MWD estimator for the methyl-methacrylate
using measurements from gel permeation chromatography (GPC) for
experimental testing. Tatiraju and Soroush (1997) compared the perfor-
mance of an EKF with a nonlinear observer for a methyl-methacrylate
system in a continuous reactor. Gentric, Pla, and Corriou (1997) and
Gentric, Pla, Latifi, and Corriou (1999) proposed an optimal policy
formulation integrated with a geometric controller and an EKF for a
batch emulsion-polymerization reactor. The trajectories followed by
the controller were optimal temperature profiles that lead to desired
characteristics of the final polymer. Li, Corripio, Henson, and Kurtz
(2004) proposed a framework for online state estimation and parameter
estimation. Statistical methods such as the particle filter have achieved a
robust performance in nonlinear state estimation (Hashemi et al., 2016).
Due to the difficulty of measuring the reactor contents, other authors
included the management of delayed and infrequent measurements
(Galdeano, Asteasuain, & Sánchez, 2011; Gopalakrishnan, Kaisare, &
Narasimhan, 2011). Beyer, Grote, and Reinig (2008) presented a com-
bined structure for control and state estimation using a sigma-point
KF for improving the control action in a Chylla–Haase polymerization
reactor. Although results exhibit satisfactory behavior and adequate
state estimation capability, some of them are purely simulation results
and others lack the advantages provided by the ACOMP system such as
directly measuring the control objective.

In this contribution, a framework that combines a state-of-the-art
sensor, multi-objective dynamic optimization, nonlinear state estima-
tion and control is proposed for a free-radical polymerization towards
full characterization and target polymer production. The ACOMP system
is combined for the first time with a nonlinear state observer, taking
advantage of its measuring ability in order to obtain better estimates
of the underlying model. As a first step, optimal policies are generated
by solving a multi-objective dynamic optimization problem targeting
polymers with different weight-average molecular weight trajectories
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