Control Engineering Practice 78 (2018) 105-115

journal homepage: www.elsevier.com/locate/conengprac

Contents lists available at ScienceDirect

Control Engineering Practice

Nonlinear predictive control on a heterogeneous computing platform R)

Bulat Khusainov ?, Eric Kerrigan " *, Andrea Suardi?, George Constantinides?®

Check for
updates

@ Department of Electrical & Electronic Engineering, Imperial College London, London, SW7 2AZ, UK

b Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK

ARTICLE INFO ABSTRACT

Keywords:

Predictive control
Hardware-software co-design
Scheduling

FPGA

Optimization-based control

We propose an implementation of an interior-point-based nonlinear predictive controller on a heterogeneous
processor. The workload can be split between a general-purpose CPU and a field-programmable gate array to
trade off the contradicting design objectives of control performance and computational resource usage. A new
way of exploiting the structure of the KKT matrix yields significant memory savings. We report an 18x memory
saving, compared to existing approaches, and a 6x speedup over a software implementation with an ARM Cortex-

A9 processor. We also introduce a new release of Protoip, which abstracts low-level details of heterogeneous
programming and allows processor-in-the-loop verification.

1. Introduction

Explicit performance optimization, systematic constraint handling
and the inherent capability of dealing with nonlinearities are the main
features that explain the success of Model Predictive Control (MPC) in
recent decades (Rawlings & Mayne, 2009). In the MPC framework a
dynamic optimization problem is solved at each sampling instant, which
might restrict the application scope to systems with slow dynamics
and/or render expensive implementations limited to high-performance
computers.

Conventionally these challenges were addressed on the algorithmic
and software levels by developing new optimization problem formula-
tions and generating hardware-efficient code (Houska, Ferreau, & Diehl,
2011). However, in addition to improvements on the software side,
recent developments in reconfigurable computing allowed acceleration
of predictive control algorithms on Field-Programmable Gate Arrays
(FPGASs), which resulted in low-cost and resource-efficient realizations
of custom quadratic programming (QP) solvers for MPC. Consider the
following implementations:

o Jerez et al. (2014) and Peyrl, Zanarini, Besselmann, Liu, and
Boéchat (2014) propose several implementations of first order-
based MPC on FPGAs. The main computational kernel for this
class of algorithms is matrix—vector multiplication, which has a
huge parallelization potential. These papers differ in the way this
operation is implemented: the former implementation is based
on an adder tree, while the latter relies on multiply-accumulate
units.

« Vouzis, Bleris, Arnold, and Kothare (2009) presents an imple-
mentation of linear MPC on a system-on-a-chip that consists
of a CPU and an FPGA. Eliminating the states from the deci-
sion variables and incorporating inequality constraints in the
cost function leads to an unconstrained nonlinear optimization
problem, which is solved using Newton’s method. For Newton’s
method the authors propose evaluating derivatives on the CPU
and accelerating solving linear systems on the FPGA.

« Jerez, Ling, Constantinides, and Kerrigan (2012) describes a two-
stage architecture for interior point-based predictive control.
Interior point algorithms have a similar computational pattern
as Newton’s method. However, the considered architecture is
tailored for solving quadratic programming problems (in contrast
to general nonlinear programming problems), which simplifies
evaluation of the derivatives. The linear system solver is based on
an iterative algorithm, hence the computational logic is reused
efficiently.

Other examples of QP-based MPC implementations and/or architec-
tures can be found in Hartley et al. (2014), Knagge, Wills, Mills, and
Ninness (2009) and Ling, Yue, and Maciejowski (2006).

Extending a hardware acceleration approach from linear to nonlinear
model predictive control (NMPC), which can be considered as the
next logical step, requires mapping numerical integration algorithms
on hardware, which is not a trivial task, since dynamic models are
problem-dependent. As a result, instead of using systematic dynamic
optimization, existing FPGA implementations of NMPC either rely on

* Corresponding author at: Department of Electrical & Electronic Engineering, Imperial College London, London, SW7 2AZ, UK.

E-mail address: e.kerrigan@imperial.ac.uk (E. Kerrigan).

https://doi.org/10.1016/j.conengprac.2018.06.016

Received 24 October 2017; Received in revised form 18 June 2018; Accepted 25 June 2018

Available online 3 July 2018
0967-0661/© 2018 FElsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.conengprac.2018.06.016
http://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2018.06.016&domain=pdf
mailto:e.kerrigan@imperial.ac.uk
https://doi.org/10.1016/j.conengprac.2018.06.016

B. Khusainov et al.

stochastic optimization (Xu, Chen, Gong, & Mei, 2016) or approximate
the offline solution with machine learning techniques (Ayala et al.,
2016). These approaches cannot guarantee scalability or closed-loop
performance.

Accelerating deterministic algorithms on hardware might be
achieved by employing heterogeneous computing platforms that involve
both a general-purpose processor with a fixed architecture and FPGA
logic. For example, Peyrl, Ferreau, and Kouzoupis (2015) present a
heterogeneous implementation of a multiple-shooting based NMPC
algorithm. The authors propose implementing integration in software
while accelerating a fast gradient-based quadratic programming solver
on an FPGA. The reported speedup of the heterogeneous implementation
over a software realization is 1.6x and further improvement is limited,
since integration and optimization algorithms have comparable compu-
tational complexity. This is a consequence of Amdahl’s law (Amdahl,
1967), which states that an algorithm’s speedup is limited by the part
of the workload that cannot benefit from acceleration.

We present a new heterogeneous implementation of a nonlinear
interior-point algorithm for predictive control that was first introduced
in Khusainov, Kerrigan, Suardi, and Constantinides (2017). The main
features of the proposed implementation are:

« A method for scheduling sparse matrix—vector multiplication
within an iterative linear system solvers to enable significant
improvements in terms of computation time vs resource usage.
For the example considered, an 18x memory saving compared to
existing approaches and a 6x speedup over a software implemen-
tation are reported.

« Flexible splitting of the algorithmic workload between software
and hardware for trading off the computational resource usage
against performance.

In addition to the initial results presented in Khusainov et al. (2017),
this paper presents the following extensions:

« The whole family of implicit and explicit Runge-Kutta methods
are supported for ordinary differential equations integration. In
contrast, the initial implementation was limited to the Euler
method only.

« The optimal control objective is generalized from a quadratic
function to nonlinear least squares.

« The proposed controller is experimentally validated in the loop
with a gantry crane high-fidelity Simscape (The Mathworks, Inc,
2015) model. In Khusainov et al. (2017) the controller was only
validated in the loop with a nominal model.

Another contribution of the paper is a new release of the Protoip
software tool (Suardi, Constantinides, & Kerrigan, 2015). Protoip allows
quick prototyping and processor-in-the-loop verification of optimization
algorithms on a Xilinx Zynq system-on-a-chip (SoC), which contains an
ARM processor and FPGA fabric. In contrast to the previous releases,
which were focused on pure FPGA implementations, the new version
of Protoip allows the incorporation of both an ARM processor and
FPGA. Protoip can be used both for quick testing of the proposed
implementation from the MATLAB environment and for design and
verification of other heterogeneous implementations.

The remainder of the paper is organized as follows: Section 2
describes the considered optimal control problem formulation; existing
NMPC algorithms, with a focus on suitability for hardware implementa-
tion, are reviewed in Section 3; in Section 4 a heterogeneous computer-
based implementation of NMPC is presented, followed by experimental
setup description (Section 5) and experimental results (Section 6). Note,
that Protoip is a part of the experimental setup and hence presented in
the corresponding section. Section 7 concludes the paper.

106

Control Engineering Practice 78 (2018) 105-115

2. Optimal control problem formulation

We consider nonlinear time-invariant systems that can be described
as an ordinary differential equation (ODE) of the form

x(1) = f.(x(0), u(®)), @

where f, : R” x R” — R". We consider the nonlinear optimal control
problem (OCP) with initial state £ and prediction horizon T

T
min /O AGe(), u(e), s3d1 + |hp(e(T), sp)|I3 (2a)
subject to:  x(0) = %, (2b)
x(t) = f(x(@), u(?)), vt € [0,T] (20)
q(x(®),u(?), s)) =0, vVt €[0,T] (2d)
gr(x(T),sp) =0, (2e)
x; < x(1) £ x,, vVt € [0,T] 20
w < u(t) <uy, VvVt € [0,T] (2g)
5; < s(t) < s vt € [0,T] (2h)
xpp £ x(T) < Xy, (2D
ST; 2 ST = S1y5 2

where 1 : R”" X R” x R"S — R": and h; : R" x R"sT — R™r. Slack
trajectory s and slack variable s, are introduced alongside with (2d)
and (2e), which is a common technique that allows for the handling
of general nonlinear inequality constraints (Wachter & Biegler, 2006).
Note that in the general case s(T') # sr. The presented formulation can
be generalized for time-varying reference tracking, which, as will be
shown later, requires only changing the software part of the algorithm.

3. Nonlinear predictive control algorithms

Direct solution of the continuous-time optimal control problem (2)
involves two main stages: integration, i.e. solving the ordinary differen-
tial equation (ODE), and optimization. Implementing integration on an
FPGA is not desirable because of the following reasons:

« The ODE (2¢) may involve mathematical expressions (e.g. sine
and square root) that, in contrast to standard addition and
multiplication operations, require significant amounts of com-
putational resources (Fig. 1) and might be unsuitable for pipelin-
ing. For examples on implementation of nonlinear operators on
FPGAs refer to de Dinechin, Joldes, Pasca, and Revy (2010) and
Detrey and de Dinechin (2007).

« A vector function f, is composed of scalar functions that might
have different underlying mathematical operations and different
evaluation complexities, i.e. f, might have irregular structure.
Irregularity potentially limits reusing computational logic and
speedup by parallelization.

Optimization algorithms, on the other hand, can benefit from hard-
ware acceleration due to (i) their iterative nature, which is beneficial
for reusing computational logic, and (ii) the fact that underlying linear
algebra algorithms can be efficiently mapped onto hardware (Jerez et
al., 2012).

Taking the above into account we consider two classes of algorithms
for solving (2): shooting-based and direct transcription algorithms
(Betts, 2010). The common feature of shooting methods is decoupling
the ODE and optimization solvers. Accelerating only the latter does
not result in significant improvements, due to Amdahl’s law, since the
workloads of the two operations are comparable. In contrast, direct
transcription algorithms transform (2) directly to a discrete OCP by



Download English Version:

https://daneshyari.com/en/article/7110204

Download Persian Version:

https://daneshyari.com/article/7110204

Daneshyari.com


https://daneshyari.com/en/article/7110204
https://daneshyari.com/article/7110204
https://daneshyari.com

