Control Engineering Practice 78 (2018) 160-174

journal homepage: www.elsevier.com/locate/conengprac

Contents lists available at ScienceDirect

Control Engineering Practice

Control
Engineering
Practice

MPC-based control architecture of an autonomous wheelchair for indoor R

environments

Check for
updates

Gianluca Bardaro, Luca Bascetta, Eugenio Ceravolo, Marcello Farina *, Mauro Gabellone,

Matteo Matteucci

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano Piazza Leonardo da Vinci, 32-20133 Milano, Italy

ARTICLE INFO ABSTRACT

MSC: In this paper a linear MPC control scheme is proposed to address the motion problems of an autonomous
00-01 wheelchair in a realistic environment. Thanks to an inner feedback-linearizing loop, the formulation of the model
99-00 predictive control problem is simplified, allowing for a real-time computationally-efficient implementation.
Keywords: Thanks to the MPC framework, constraints like obstacle avoidance, actuator limitations, and passenger comfort
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have been included in the optimization problem. Experimental results show the effectiveness of the proposed

1. Introduction

In many application domains, autonomous and semi-autonomous
vehicles play a fundamental role, e.g., in air (Alexis, Nikolakopoulos,
& Tzes, 2012; Dydek, Annaswamy, & Lavretsky, 2013; Ryll, Biilthoff,
& Robuffo Giordano, 2015), sea (Cervantes, Yu, Salazar, Chairez, &
Lozano, 2016; Millan, Orihuela, Jurado, & Rubio, 2014), land (Hu,
Wang, Yan, & Chen, 2016; Wang, Jing, Hu, Yan, & Chen, 2016),
and space (Truszkowski, Hinchey, Rash, & Rouff, 2006) explorations,
in operations in dangerous and/or unknown environments, in mine
detection, in agricultural applications (Liu, Wang, & Zhou, 2008),
in the Ambient-Assisted Living (AAL) field (Celeste, Filho, Filho, &
Carelli, 2008; Sinyukov & Padir, 2015), and they are also envisaged
as promising solutions for enhancing road safety (Cavanini, Benetazzo,
Freddi, Longhi, & Monteriti, 2014; Guo, Hu, & Wang, 2016; Lefévre,
Carvalho, & Borrelli, 2016). In particular, control in AAL is crucial to
improve the life quality of — especially elderly and physically impaired —
people, e.g., in home and hospital environments (Cavanini et al., 2014;
He et al.,, 2017; Leaman & La, 2017; Li et al., 2017; Parikh, Grassi,
Kumar, & Okamoto, 2007; Zhang et al., 2016).

Autonomous vehicles are sophisticated systems, endowed with ad-
vanced sensing, actuation, processing, and data transmission capabili-
ties. As far as the software is concerned, a large number of algorithms
must run in parallel and in real-time (including, e.g., localization, object
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and obstacle recognition, and a complex hierarchical control structure
including a number of different planning and control layers) to provide
efficient, reliable, robust, and safe operation. At the core of these
complex systems lies a control algorithm, that aims at conferring to
the vehicle robust stability and suitable performance levels in different
control tasks, e.g., parking, trajectory tracking, obstacle avoidance, etc.

The approaches traditionally used by the robotics community for
trajectory tracking and collision avoidance of mobile robots and au-
tonomous vehicles are based on the Dynamic Window Approach (DWA)
(Fox, Burgard, & Thrun, 1997) and on the Timed Elastic Band (TEB)
(ROosmann, Feiten, Wosch, Hoffmann, & Bertram, 2012, 2013; Rosmann,
Hoffmann, & Bertram, 2015) algorithms. DWA is based on the online
definition of an optimal control action by sampling the control space,
generating feasible paths and choosing the best one between them based
on an optimality criteria. TEB, instead, takes the initial trajectory gen-
erated by a planning algorithm and performs and online optimization
minimizing the trajectory execution time, separation from obstacles and
compliance with kinodynamic constraints such as satisfying maximum
velocities and accelerations.

Besides usual control tasks, like trajectory tracking or parking,
other control specifications, e.g., smooth acceleration and deceleration
profiles and collision avoidance requirements, must be properly formu-
lated to guarantee safety and comfort. Model Predictive Control (MPC)
(Rawlings & Mayne, 2009) has gained interest, in the past decade, in the
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field of autonomous vehicle control, in view of the possibility to cast the
motion problems into optimization ones, where operational constraints
can be enforced and where predictions can be included. Indeed, MPC
allows to develop modular control strategies, where the aforementioned
requirements can be formulated in terms of constraints or elements of
the cost function, that can even support different operating scenarios,
e.g., wheelchair indoor navigation and sidewalk or road driving, by
changing on the fly constraints or cost function elements. It is worth
noting also that robust MPC implementations are also available, to
account for disturbances and model inaccuracies (Rawlings & Mayne,
2009).

In the context of MPC-based autonomous vehicle control, in many
works a hierarchical scheme is proposed, consisting of (i) a (event based
or slow timescale) local planner that guarantees obstacle avoidance
features, possibly based on a rough vehicle mathematical model and
(i) a low-level (path-following) controller, based on a high-fidelity
mathematical model. For example, in Falcone, Borrelli, Asgari, Tseng,
and Hrovat (2007) this scheme is applied to a 6-states bicycle model
with constant wheel angular speed. For numerical complexity reduction,
the model is linearized at each time step around the current operating
point, leading to a LTV system. Related works (Gao et al., 2012;
Gao, Lin, Borrelli, Tseng, & Hrovat, 2010; Gray et al., 2012) propose
different solutions for local planning. In Bernardini, Cairano, Bemporad,
and Tseng (2009) and Palmieri, Barbarisi, Scala, and Glielmo (2009)
dynamic path following layers, similar to the one developed in Falcone
et al. (2007), are developed also for lateral dynamics, side-slip control,
or yaw rate reference tracking, based on full vehicle models. Also in
Katriniok and Abel (2011), a similar low-level stabilizing controller
is proposed, to work at the limits of the model dynamics, and where
the linearized prediction model proposed in Falcone et al. (2007) is
performed, at each time step, not about the current operating point,
but about future estimated trajectories, resulting in a time-varying
prediction model. A robust low-level MPC implementation is proposed
in Bahadorian, Savkovic, Eaton, and Hesketh (2012) using a bicycle
model, linearized about the reference trajectory to be tracked. In Raffo,
Gomes, Normey-Rico, Kelber, and Becker (2009) a similar hierarchical
scheme is proposed: a linear MPC-based local planning (called vehicle
guidance) level is devised using the linearized kinematic model of the
Ackermann steered vehicle, controlling position and orientation using
the desired steering angle as control variable; the dynamic control layer
aims to control the yaw rate and the chassis side-slip.

In later works the two levels (i.e., local planner and path follower)
are fused together. In Frasch et al. (2013) a nonlinear MPC (NMPC)
algorithm solved online with advanced numerical optimization allows to
account for obstacle and road traffic constraints, modeled as bounds on
the state vector. Here a four-wheel vehicle dynamical model with wheel
dynamics and load transfer is used, transformed to a position-dependent
one, which is also the approach taken in Plessen, Bernardini, Esen, and
Bemporad (2018). In Gao, Gray, Carvalho, Tseng, and Borrelli (2014),
a robust tube-based MPC strategy is used considering LTV models,
while in Lenz, Kessler, and Knoll (2015) chance constraints are used for
comfortable and safe driving. In Ji, Khajepour, Melek, and Huang (2017)
and Rasekhipour, Khajepour, Chen, and Litkouhi (2017), the reference
trajectory is defined based on a potential field, considering both the goal
and the obstacles. General theoretical grounds for trajectory-tracking
and path-following controllers are established in Alessandretti, Aguiar,
and Jones (2013) and Faulwasser and Findeisen (2016).

Note that distributed MPC-based schemes have also been developed
for vehicle formation stabilization (Chen, Sun, Yang, & Chen, 2010;
Dunbar & Murray, 2006; Keviczky, Borrelli, Fregene, Godbole, & Balas,
2008), multi-vehicle guidance (Kuwata, Richards, Schouwenaars, &
How, 2007), multiple vehicle coordination (Farina, Perizzato, & Scat-
tolini, 2015; Xie & Fierro, 2007).

With specific reference to control of the unicycle-type model, which
is the one considered in this paper, two main approaches are taken.
For reference trajectory tracking, the most common approach consists
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of linearizing the tracking error model around the reference trajectory.
This approach is taken, e.g., in Kiihne, Lages, and Gomes Da Silva (2004)
and in Bahadorian et al. (2012) and Gonzalez, Fiacchini, Guzman,
and Alamo (2009), where robust MPC is used. On the other hand,
the NMPC is adopted for point stabilization (Kiihne, Lages, & Gomes
Da Silva, 2005; Xie & Fierro, 2008) and for general problems (Gu &
Hu, 2006; Maniatopoulos, Panagou, & Kyriakopoulos, 2013). In these
papers, collision avoidance constraints are not addressed, but only
state convex regions are admitted, including the field-of-view state
constraints defined in Maniatopoulos et al. (2013).

In this work we rely on linear models thanks to a standard feedback
linearization procedure, similar to the one adopted in Oriolo, De Luca,
and Vendittelli (2002) and in Farina et al. (2015); this approach allows
to formulate operational, comfort, and collision avoidance requirements
as linear constraints: the MPC optimization problem can be thus greatly
simplified, allowing for real-time efficient implementation, as witnessed
by the experimental results.

Note, however, that in Farina et al. (2015) the proposed control
approach is a distributed one, tailored for completing multi-agent tasks
(e.g., formation control and coverage), and that it is applied to a team of
small-scale educational unicycle robots, with no real realization prob-
lems (e.g., localization, real-time implementation in the ROS platform,
actuation).

A preliminary control scheme for wheelchair control based on this
approach and preliminary results can be found in Ceravolo, Gabellone,
Farina, Bascetta, and Matteucci (2017). The present work, however,
besides including more thorough discussions, presents the overall con-
trol scheme (including localization, planning, and obstacle detection
functionalities) in a more rigorous and comprehensive fashion, as well
as the implementation/realization choices. Also, it essentially differs
from the preliminary paper (Ceravolo et al., 2017) in many respects.
For example, the control scheme has been implemented in C+ + and
embedded, in the form of a local planner, in the Robot Operating System
(ROS) (Quigley et al., 2009) standard navigation stack. Also, in this
work we have performed a number of new, more comprehensive, and
more realistic experimental tests, including a test where two persons are
moving in the working area.

The paper is organized as follows. Section 2 describes the model
of the system under control, the actuator dynamics, the feedback
linearization procedure, and the main regulator structure. Section 3
focuses on the MPC control problem, including the definition of the
cost function and of the constraints, while Section 4 introduces some
implementation details. Section 5 shows significant experimental tests,
while conclusions are drawn in Section 6. Finally, in Appendix, some
technical details on the feedback linearization procedure are given.

2. Feedback linearization and control-oriented model of the
wheelchair dynamics

In this section we first introduce the nonlinear kinematic model of
the wheelchair, showing the results of the actuator identification phase.
Moreover, we describe how an internal control loop for the wheelchair
is designed, based on the feedback linearization technique, to obtain a
versatile discrete-time linear control-oriented model, to be used by a
suitable MPC control algorithm.

2.1. Unicycle model

From a kinematic point of view, the motion of a wheelchair can be
represented using the unicycle nonlinear model, i.e.,

X(1) = Upopg () cos 0(1)
V() = Uygng (1) sin 6(¢)
0(t) = (1)

@

where x(7), y(t) and 6(r) are the state variables representing the wheel
axle center position and orientation in the global reference system (see
Fig. 1). The input variables are commonly the longitudinal and angular
velocities v}on, (1) and w(?), respectively.
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