
Control Engineering Practice 77 (2018) 41–51

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

A multirate fractional-order repetitive control for laser-based additive
manufacturing
D. Wang, X. Chen *
Department of Mechanical Engineering, University of Connecticut, Storrs, CT, 06269, USA

A R T I C L E I N F O

Keywords:
Selective laser sintering
Laser scanning mechanism
Numerical simulation
Multirate sampled-data control

A B S T R A C T

This paper discusses fractional-order repetitive control (RC) to advance the quality of periodic energy deposition
in laser-based additive manufacturing (AM). It addresses an intrinsic RC limitation when the exogenous signal
frequency cannot divide the sampling frequency of the sensor, e.g., in imaging-based control of fast laser-material
interaction in AM. Three RC designs are proposed to address such fractional-order repetitive processes. In
particular, a new multirate RC provides superior performance gains by generating high-gain control exactly
at the fundamental and harmonic frequencies of exogenous signals. Experimentation on a galvo laser scanner in
AM validates effectiveness of the designs.

1. Introduction

Repetitive control (RC) (Inoue, Nakano, Kubo, Matsumoto, & Baba,
1981) is designed to track/reject periodic exogenous signals in applica-
tions with repetitive tasks. By learning from memories of previous iter-
ations in the repetitive task, RC can drastically enhance current control
performance in the structured task space. Application examples include
tracking controls in magnetic and optical disk drives (Chew & Tomizuka,
1989; Doh, Ryoo, & Chung, 2006), wafer scanners (Chen & Tomizuka,
2014), and robotic manipulators (Cosner, Anwar, & Tomizuka, 1990;
Meng, Xie, Liu, Lu, & Ai, 2017), as well as regulation controls in wind
turbines (Castro, Salton, Flores, Kinnaert, & Coutinho, 2017; Navalkar
et al., 2014), power converters (Nazir, Zhou, Watson, & Wood, 2015),
and unmanned aerial vehicles (He, Guo, & Leang, 2017).

This paper studies RC in laser-based additive manufacturing (AM)
processes, with a focus on the selective laser sintering (SLS) subcategory.
This AM technology applies laser beams as the energy source to melt
and join powder materials (Schmidt et al., 2017). A typical workpiece
is built from many thousands of thin layers. Within each layer, the
laser beam is reflected by mirrors driven by periodic or near-periodic
reference signals in a beam deflection mechanism (e.g., a dual-axis
galvo scanner) to follow trajectories predefined by the part geometry
(in a ‘‘slicing’’ process). This process (see, e.g., Fig. 1) contains highly
repetitive thermomechanical interactions (Carter, Martin, Withers, &
Attallah, 2014; Kruth et al., 2004; Simchi & Pohl, 2003). As a result,
periodic errors are introduced in the laser-material interaction and path
planning. Indeed, such periodicity has been validated and leveraged
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upon to improve control processes in other laser-based AM technolo-
gies (Heralić, Christiansson, & Lennartson, 2012; Hoelzle & Barton,
2016; Lim, Hoelzle, & Barton, 2017).

To fully release the capability of RC to fundamentally improve
the repetitive laser scanning in SLS AM, the internal model principle
(Francis & Wonham, 1975; Hara, Yamamoto, Omata, & Nakano, 1988)
must be carefully configured in the control design. In digital RC, an
internal model 1∕(1 − 𝑧−𝑁 ) is implemented in the controller, where 𝑧
is the complex indeterminate in the 𝑧-transform and 𝑁 is the period of
the disturbance/reference. 𝑁 equals the sampling frequency (denoted
in this paper as 1∕𝑇𝑠 or 𝑓𝑠) divided by the fundamental frequency (𝑓0)
of the periodic signal. When 𝑁 is an integer, the repetitive controller
can generate high gains at the fundamental frequency and its harmonics,
yielding small gains in the error-rejection dynamics to create the desired
servo performances. When 𝑓𝑠 is not divisible by 𝑓0, that is, 𝑁 is not
an integer, RC with the rounded 𝑁 cannot target the aimed harmonic
frequencies exactly, resulting in degraded performances.

Several strategies exist to potentially address problems related to
fractional-order periods in RC. Steinbuch, Weiland, and Singh (2007)
and Ramos and Costa-Castelló (2012) introduce high-order repetitive
controllers with delay elements to widen the high-gain regions around
the harmonic frequencies. Nakano, She, Mastuo, and Hino (1996), Yao,
Tsai, and Yamamoto (2013), and Chen, Yamada, Sakanushi, and Zhao
(2013) employ spatial repetitive controllers in a spatial domain to obtain
time-invariant disturbance periods. Cao and Ledwich (2002) and Kur-
niawan, Cao, and Man (2011) propose adaptive RC schemes where
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Fig. 1. Schematic of laser scanning patterns in SLS. The example shows the
most common ‘‘island’’ pattern in SLS of metallic objects.

the sampling rate is adjusted adaptively to get an integer 𝑁 . Merry,
Kessels, Heemels, Van De Molengraft, and Steinbuch (2011) proposes a
delay-varying repetitive controller that uses knowledge of the repetitive
variable to continuously adjust the time-varying delay. Nazir et al.
(2015), Liu, Zhang, and Zhou (2017), and Zou, Zhou, Wang, and Cheng
(2015) design different filters to approximate the fractional orders of
delays. Liu, Wang, and Zhou (2016) uses a correction factor to correct
the deviated poles of the fractional-order repetitive controller.

Despite the existing literature, it remains not well understood how
to create RC exactly at the harmonic frequencies in the presence of
fractional-order periods and how to systematically analyze the closed-
loop performances. To bridge these knowledge gaps, this paper aims
at generating enhanced control efforts exactly at desired frequencies
in the fractional-order RC. The main result is the development of a
multirate RC algorithm and two indirect RC schemes. First, a wide-band
RC is achieved by applying the nearest integer of 𝑁 while widening
the attenuation width of each frequency notch in the error-rejection
dynamics. In the second indirect RC, a fictitious fundamental frequency
is introduced to get an integer 𝑁 , which creates an overdetermined
rejection of the original repetitive errors. The proposed new multirate
RC designs the internal model under a second divisible fast sampling
frequency 𝑓 ′

𝑠 such that 𝑁 = 𝑓 ′
𝑠∕𝑓0 is an integer, and embeds a new zero-

phase low-pass filter design to address multirate closed-loop robustness.
Along the course of formulating the multirate RC, an unexpected

selective loop-shape modulation is discovered in the intrinsic multirate
digital control design. This fundamental behavior, prone to be neglected
in the design phase, inspires in the first instance a closed-loop analysis
method that exhibits the complete disturbance-attenuation properties
of the multirate RC. This analysis method also enables a new design
space for applying RC to general systems with mismatched sampling and
task periodicity. The remainder of this paper will discuss the theoretical
benefits, implementation guidance, and performance comparison of the
proposed algorithms. Theoretical analyses are verified by a case study
on a galvo scanner in SLS.

A preliminary version of the findings was accepted by the 2018
American Control Conference (Wang & Chen, 2018). This paper substan-
tially extends the research with new theoretical results and illustrative
examples. The remainder of this paper is structured as follows. Section 2
reviews a RC design. Two examples in Section 3 elucidate the existence
of fractional-order disturbances in SLS. Section 4 builds the proposed
fractional-order RC algorithms. Section 5 provides the numerical and
experimental verifications of the algorithms. Section 6 concludes the
paper.

2. Preliminaries of repetitive control

The proposed fractional-order RC algorithms are based on a plug-
in RC design in Fig. 2 (Chen & Tomizuka, 2014). Consider a baseline
feedback system composed of the plant 𝑃 (𝑧) and the baseline controller
𝐶(𝑧) (Fig. 2 without the dotted box). 𝐶(𝑧) can be designed by means
of common servo algorithms, such as PID, 𝐻∞, and lead–lag compen-
sation. The signals 𝑟(𝑘), 𝑒(𝑘), 𝑑(𝑘), and 𝑦𝑑 (𝑘) represent, respectively,

Fig. 2. Block diagram of a plug-in RC design.

the reference, the tracking error, the input disturbance, and the system
output. Throughout the paper, it is assumed that (1) the coefficients of
all transfer functions are real; (2) both 𝑃 (𝑧) and 𝐶(𝑧) are rational, proper,
linear, and time-invariant; (3) the baseline feedback loop consisting of
𝑃 (𝑧) and 𝐶(𝑧) is stable.

The plug-in compensator utilizes the internal signals 𝑒(𝑘) and 𝑢𝑑 (𝑘) to
generate a compensation signal 𝑤(𝑘). Let 𝑚 denote the relative degree
of 𝑃 (𝑧), whose nominal model is 𝑃 (𝑧). With the plug-in compensator,
the transfer function of the overall controller from 𝑒(𝑘) to 𝑢𝑑 (𝑘) is

𝐶𝑎𝑙𝑙(𝑧) =
𝐶(𝑧) + 𝑧−𝑚𝑃−1(𝑧)𝑄(𝑧)

1 − 𝑧−𝑚𝑄(𝑧)
. (1)

If 𝑄 = (1 − 𝛼𝑁 )𝑧𝑚−𝑁∕(1 − 𝛼𝑁𝑧−𝑁 ), that is,

1 − 𝑧−𝑚𝑄(𝑧) = 1 − 𝑧−𝑁

1 − 𝛼𝑁𝑧−𝑁
, (2)

where 𝛼 ∈ [0, 1) is a tuning factor that determines the attenuation
bandwidth of 1 − 𝑧−𝑚𝑄(𝑧), then at the harmonic frequencies (𝜔𝑘 =
𝑘2𝜋𝑓0𝑇𝑠, 𝑘 ∈ Z+, the set of positive integers), the magnitude responses
of 1 − 𝑧−𝑚𝑄(𝑧) are zero because 1 − e−𝑗𝜔𝑘𝑁 = 1 − e−𝑗𝑘2𝜋𝑓0𝑇𝑠∕(𝑓0𝑇𝑠) =
1 − e−𝑗𝑘2𝜋 = 0. Hence, |𝐶𝑎𝑙𝑙(𝑧)| → ∞ and 𝐺𝑑→𝑦𝑑 (𝑧) =

𝑃 (𝑧)[1−𝑧−𝑚𝑄(𝑧)]
1+𝑃 (𝑧)𝐶(𝑧) = 0

when 𝑧 = e𝑗𝜔𝑘 . At the intermediate frequencies, 𝑄(e𝑗𝜔) ≈ 0, and
|1 − 𝑧−𝑚𝑄(𝑧)|𝑧=e𝑗𝜔 ≈ 1 when 𝛼 is close to 1; thus 𝐶𝑎𝑙𝑙(𝑧) ≈ 𝐶(𝑧), and
the original loop shape is maintained. Choosing a smaller 𝛼 can yield a
wider attenuation bandwidth, at the cost of deviating from the baseline
loop shape.

Note that for 𝑄(𝑧) in (2) to be implementable, the disturbance
period 𝑁 should be greater than the relative degree 𝑚, which is
commonly satisfied in sampled-data regulation control. For instance, in
the multirate RC example in Section 5, 𝑁 = 40 > 𝑚 = 3. Indeed, since
the closed-loop bandwidth (𝐵𝑝) is designed to cover the fundamental
disturbance frequency 𝑓0 and 𝐵𝑝 is no less than 10% of the Nyquist
frequency (𝑓𝑠∕2) from principles of feedback design, common control
practice thus renders 𝑁 = 𝑓𝑠∕𝑓0 to be greater than 20. That is, 𝑁 is at
least one order of magnitude larger than the relative degree of the plant
model under principles of feedback design.

During implementation, zero-phase pairs 𝑞𝑗 (𝑧−1)𝑞𝑗 (𝑧) (𝑗 ∈ Z) are
additionally incorporated into 𝑄(𝑧) for robustness against plant uncer-
tainties at high-frequency regions:

𝑄(𝑧) =
(1 − 𝛼𝑁 )𝑧−(𝑁−𝑚)

1 − 𝛼𝑁𝑧−𝑁

𝑀
∏

𝑗=0
𝑞𝑗 (𝑧−1)𝑞𝑗 (𝑧), (3)

where 𝑀 ∈ Z is determined according to the design requirements. For
instance, the following design of 𝑞𝑖(𝑧) (𝑖 ∈ Z+) places four zeros of 𝑄(𝑧)
at e±𝑗𝛺𝑖𝑇 ′

𝑠 to make its frequency response equal zero at 𝛺𝑖:

𝑞𝑖(𝑧) =
1 − 2 cos(𝛺𝑖𝑇𝑠)𝑧 + 𝑧2

2 − 2 cos(𝛺𝑖𝑇𝑠)
. (4)

𝑞0(𝑧) =
(1 + 𝑧)𝑛0

2𝑛0
, 𝑖 = 0. (5)

Here, 𝑛0 ∈ Z is the number of the added zero pairs at the Nyquist
frequency. Note that the 𝑄-filter in (3), (4), and (5) is designed assuming
an integer 𝑁 under the sampling time of 𝑇𝑠.

42



Download English Version:

https://daneshyari.com/en/article/7110238

Download Persian Version:

https://daneshyari.com/article/7110238

Daneshyari.com

https://daneshyari.com/en/article/7110238
https://daneshyari.com/article/7110238
https://daneshyari.com

