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Abstract: Wiener models are an important class of nonlinear systems which well approximate many 
applications. Real time optimal control of Wiener models, for instance in the form of receding horizon 
optimal control, can be done using the nonlinear setup and corresponding nonlinear optimization tools. 
However, as this paper shows, under rather mild conditions on the static nonlinearity, it is possible to re-
formulate the optimal control problem as a linear problem with an asymmetric cost function, whose 
solution can be computed using a slack variable extension of the initial quadratic problem with a small 
additional computational cost. This paper shows the approach and the achievable performance at the 
example of the emission control of a large gas engine used in the U.S. pipeline network. 
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1. INTRODUCTION 

Wiener systems are a well known class of nonlinear systems 
consisting of a linear dynamics followed by a static nonlinear 
map. Due to their simple form, they have attracted much 
interest especially as a way to approximate more complex 
systems, see e.g. (Norquay, et al., 1999) and references 
therein. Accordingly, the identification of Wiener and 
Hammerstein models has also attracted much attention, see 
e.g. (Guo, 2003; Pearson and Pottmann, 2000; Vandersteen 
and Schoukens, 1997). 

     
Fig. 1: NOx as a function of φ 
 

From a practical point of view, there are two different 
interpretations of Wiener models. The nonlinear static map 
can be interpreted as a measurement characteristic, implying 
the output of the linear part to be the real target value and the 
nonlinear element to be the deformation due to the sensor. In 
such a case, the nonlinear map can usually be inverted and 
the system treated to almost all purposes as a linear one. 
However, there are other cases in which the real target value 
is the output of the nonlinearity, so any linearization would 
induce substantial errors.  

Consider, for example, the application behind this paper, i.e. 
the NOx control of stationary operating gas engines used in 
pipeline compressor stations: the fuel/air ratio φ of these 
engines can be described rather well by linear models, but the 
real target quantity is the value of the exhaust NOx 
concentration. Due to the limited speed and temperature 
range of these engines and the lean operation, it turns out that 
the relation between NOx and φ can be approximated by a 
static map as shown in Fig. 1. It is evident that optimal 
control of φ is not equivalent to the optimal control of the 
NOx concentration. 

Receding horizon optimal control, in particular in the form of 
model predictive control, has been the topic of a huge number 
of publications and of many years of successful experience 
(Camacho and Bordons, 2004; Rawlings, 1999; Scokaert and 
Mayne, 1998). These methods have also been applied to the 
automotive field, see e.g. (Falcone, et al., 2008; Ortner and 
del Re, 2007).  

Still, very few works have been centered on the optimal 
control of Wiener models, some exceptions being a work on 
its application to a pH neutralization experiment (Norquay, et 
al., 1999), or (Pérez, et al., 2006) who consider the 
application of Wiener and Hammerstein models to predictive 
control of a Diesel engine airpath. Both have in common, that 
they only take into account the linear part in the optimal 
controller. (Bloemen, et al., 2001) determine bounds for the 
nonlinearities and then apply a robust MPC approach. 
Recapitulatory, in all these cases a linear problem is solved 
instead of the original one. 

To better understand the problem, recall that a discrete-time 
optimal control problem comprising linear system dynamics, 
a quadratic cost function and (possibly) linear constraints is 
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well-known to be a quadratic programming problem (QP). 
Moreover, this QP is strictly convex – and thus has a unique 
solution – whenever the cost function is strictly convex. 
Convex QPs can be solved very efficiently and reliably using 
dedicated QP solvers.  

Unfortunately, when system dynamics are given in form of a 
Wiener system, this valuable structure is lost. In fact, without 
additional assumptions on the nonlinear static output map, 
the optimal control problem will result in a general, and 
usually non-convex, nonlinear programming problem (NLP). 
This loss of structure increases computational load for 
solving these problems significantly (easily by one or more 
orders of magnitude) and, due to the lack of convexity, the 
solver might even get stuck in a local minimum. While 
keeping convexity for systems with nonlinear dynamics is 
almost hopeless (see (Azhmyakov and Raisch, 2008) for a 
few limited exceptions), this property remains for optimal 
control problems comprising a Wiener system if the static 
map satisfies certain conditions, as we will point out in the 
next section. If they are met, the resulting optimal control 
problem is equivalent to a convex NLP, where every local 
solution is also a global one. In such a situation, we propose 
substituting this convex NLP by a convex QP using an 
asymmetric cost function. In doing so, computational effort is 
greatly reduced while the nonlinearities of the Wiener 
systems are still taken into account, thus improving 
performance over a purely linear model.  

2. MOTIVATION OF AN ASYMMETRIC COST 
FUNCTION 

2.1 MPC with Symmetric Cost Function 

In receding horizon control the objective is formulated at 
every time instant by use of the system description. 
Frequently the objective is to minimize the squared 
deviations from a given reference and to keep the control 
action small. The determination of the control signal uΔ  can 
then be formulated as the following optimization problem 
(with positive definite matrices Qy and R): 
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In (1) the predicted system output y  ( iy is actually equal to 

0 0( | )iy t t t+ ) is used to determine the optimal input uΔ  over 
the control horizon with length nCH that minimizes the 
objective over the prediction horizon with length nPH. In case 
of a linear state space representation  
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formulation (1) simplifies to the standard linear MPC setup. 
In this case the optimization problem can be stated in the 
form of a quadratic problem 
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The matrices H and G are constant, whereas the gradient g 
and the constraint vectors need to be updated every time 
instant. As mentioned before, problems in the form of (3) can 
be solved efficiently by numerical QP solvers, e.g. using the 
online active set strategy as proposed in (Ferreau, et al., 
2008) for the MPC context. If the system dynamics ( , )i if x u  
or the output function ( )ih x  is nonlinear, optimization 
problem (1) cannot be stated as a QP anymore and thus a 
nonlinear solver is required to solve the resulting generic 
NLP. This does not only increase the online computational 
load significantly, also the implementation and software 
maintenance effort of an NLP solver is typically higher than 
that of a simpler QP solver. In order to circumvent these 
undesirable complications, the next section presents a class of 
nonlinear systems where the optimization problem (1) can be 
reformulated to make it suitable for QP solvers. 

2.2 Asymmetric Cost Function for a Class of Wiener Systems 

In general, Wiener systems consist of a linear dynamic block 
followed by a static nonlinearity. 

 
Fig. 2: Wiener system 
 
In a state-space representation the system can be described by 

 
1

( )

i i i

i i

i i

x A x B u
z C x
y h z

+ = ⋅ + ⋅

= ⋅
=

, (4) 

where we make the standing assumption that h is invertible. 
Still, due to the nonlinearity ( )i iy h z=  a nonlinear solver is 
required for the solution of problem (1) for Wiener systems. 
In theory, regulating the system to a constant setpoint 

1( )ref refz h y−=  is equal to regulating the nonlinear system to 
yref for steady state. However, in case of actuator and/or 
system limits as well as model-plant mismatches, a perfect 
tracking might not be possible and thus minimizing the 
deviations to zref is not equal to minimizing the deviations to 
yref. In other words, if a tracking of the linear system part is 
done, than the objective needs to be changed to maintain the 
initial performance requirements. 
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