
Control Engineering Practice 77 (2018) 118–126

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Resonant–repetitive controller with phase correction applied to
uninterruptible power supplies
Charles Lorenzini, Jeferson Vieira Flores *, Luís Fernando Alves Pereira, Luís Alberto Pereira
Escola de Engenharia, Universidade Ferederal do Rio Grande do Sul, Av. Osvaldo Aranha 103, 90035-190 Porto Alegre-RS, Brazil

A R T I C L E I N F O

Keywords:
Resonant control
Repetitive control
Phase matching
State space methods
Uninterruptible power systems

A B S T R A C T

This paper proposes a new control structure based on the parallel interconnection of a filtered repetitive controller
and a resonant structure applied to uninterruptible power supplies — UPS. In particular, the filter in series with
the repetitive controller adjusts the phase angle between resonant and repetitive loops, improving in this way the
tracking performance. A particular filter structure is proposed, and an augmented state formulation is derived.
Controller design is then carried out by the solution of an optimization problem with linear matrix inequalities
constraints. Experimental results on a commercial 3.5kVA UPS illustrate the closed-loop performance.

1. Introduction

Uninterruptible power supplies are designed to deliver controlled
voltage to critical loads with high quality and in a reliable way.
International standards, such as IEEE944 and IEC62040-3, state basic
requirements for the output voltage in steady-state and also under tran-
sient conditions (IEC62040, 2011). These standards require a sinusoidal
output voltage with fixed amplitude and frequency; in addition, it must
have low total harmonic distortion (THD) and low individual harmonic
distortion (IHD) rates when subjected to periodic load disturbances,
usually caused by nonlinear loads. On the other hand, small variations
in the amplitude and frequency of the output voltage are allowed. These
standards also require a fast transient response to perturbations caused
by load connections/disconnections.

Due to its simple structure and easy tuning, the proportional–
integral–derivative (PID) controller has been extensively used by man-
ufactures of UPS, although this type of controller is not appropriate to
track a sinusoidal reference (Willmann, Coutinho, Pereira, & Libano,
2007). This drawback has motivated the development of new con-
trol techniques which make the controller more robust, enabling the
closed-loop system not only to follow sinusoidal references but also
to reject periodic disturbances, such as sliding-mode controllers (Liu,
Vazquez, Wu, Marquez, Gao, & Franquelo, 2017; Liu, Yin, Luo, Vazquez,
Franquelo, & Wu, 2017), which attempt to minimize the harmonic
distortion caused by nonlinear loads. In this context, controllers based
on the internal model principle (IMP) stand out, e.g. resonant (Karttunen,
Kallio, Honkanen, Peltoniemi, & Silventoinen, 2017; Maccari, Pinheiro,
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Oliveira, & Montagner, 2017) and repetitive controllers (Nazir, 2017;
Ramos, Costa-Castelló, & Olm, 2012; Yao, Tsai, & Yamamoto, 2013).

Resonant controllers with one resonant mode tuned to the fundamen-
tal frequency, when applied to a UPS, can track a sinusoidal reference
with zero error. Furthermore, it provides a fast dynamic response when
subjected to load transients (Fukuda & Yoda, 2001). In contrast, it is not
able to completely reject disturbances containing harmonic components
different from the fundamental frequency. An alternative in this case is a
structure with multiple resonant controllers as showed in Pereira, Flores,
Bonan, Coutinho, and Gomes da Silva (2014), which also contains
resonant modes at the harmonic frequencies that mostly contribute to
the disturbance signal.

On the other side, repetitive controllers satisfy the internal model
principle (IMP) by means of a delay element corresponding to the
fundamental period in a positive feedback loop, as described in Inoue,
Nakano, and Iwa (1981). However, to achieve a stable operation and
at the same time to avoid noise amplification, a low-pass first-order
filter is connected in series with the delay element (Hara, Yamamoto,
Omata, & Nakano, 1988). One disadvantage of this solution is a loss
of tracking performance when following the reference signal caused by
the reduction in magnitude and the displacement of resonance peaks in
the controller frequency response. As a result, when applied to a UPS,
this kind of controller can, in fact, provide rejection of perturbations
with harmonic frequency components different from the fundamental
frequency, but it shows a tracking error associated with the low-pass
filter in series with the delay element. To mitigate this problem, a
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correction in the delay element is proposed in Hornik and Zhong (2011)
and Weiss and Häfele (1999) to precisely locate the resonance peaks
where they are required, whereas in Lorenzini, Flores, Pereira, Salton,
and Castro (2015) this concept is used together with a correction in the
magnitude of the filter response, thus restoring the infinite gain at the
fundamental frequency of the repetitive controller.

The concept of a hybrid resonant–repetitive (RR) controller is rela-
tively new in both control theory and power electronics literature as
can be seen in Lidozzi, Ji, Solero, Zanchetta, and Crescimbini (2015),
Salton, Flores, Pereira, and Coutinho (2013) and Yang, Zhou, and
Blaabjerg (2016). The main idea behind this controller is to take full
advantage of sinusoidal reference tracking with zero error, provided
by the resonant structure, allied to harmonic rejection, yielded by the
repetitive controller. In Salton et al. (2013), the authors proposed a
parallel structure for the RR controller and robust synthesis conditions in
the form of linear matrix inequalities (LMI). In addition, they considered
the use of complementary filters to decouple resonant and repetitive
effects at the fundamental frequency; nevertheless, this case cannot be
treated with the proposed LMI conditions and only simulation results
were provided. In Lidozzi et al. (2015) a series implementation of the
RR controller is applied to a three-phase four-leg inverter, whereas
Yang et al. (2016) employed a parallel structure to improve frequency
adaptability of grid-connected power converters. In both works, the
controller design is carried out by using frequency-domain techniques.

Based on the RR controller presented in Salton et al. (2013), this
paper proposes the robust synthesis of a new RR controller with an
alternative filter structure. In this new controller, termed here filtered
resonant–repetitive (FRR) controller, two distinct corrections are con-
sidered: (i) the repetitive controller delay element is corrected as in
Lorenzini et al. (2015) and (ii) an additional filter in series with the
repetitive structure is used to adjust the phase angle between the
resonant and repetitive loops. The closed-loop system is described based
on an augmented state-space representation which is then used to
design the feedback gains through the solution of a convex optimization
problem under constraints in the form of LMI.

The main contributions of this paper are: (i) proposal of a filter
in series with the repetitive structure to correct phase mismatch; (ii)
tuning of controller parameters based on robust control techniques; (iii)
experimental validation of the proposed method on a commercial UPS of
3.5 kVA and comparison with the RR structure from Salton et al. (2013)
in the light of IEC62040-3 performance requirements.

Notation: R is the set of the real numbers; the derivative of a
function 𝑟(𝑡) is represented by �̇�(𝑡), while 𝐈𝑚 stands for the identity
matrix of order 𝑚. For two real matrices, say 𝐀 and 𝐗, 𝐀′ indicates the
transposed of 𝐀, and 𝐀 > 0 (𝐀 < 0) means that 𝐀 is a symmetric, positive
definite (negative definite) matrix and that He{𝐀𝐗} = 𝐀𝐗 + 𝐗′𝐀′.

2. Mathematical model of UPS

For the UPS considered here, sinusoidal output voltage is obtained
through a half-bridge, single-phase inverter, whose output is connected
to a second-order low-pass LC-filter, as schematically depicted in Fig. 1.
The IGBTs (Insulated Gate Bipolar Transistor) 𝑆1 e 𝑆2 are driven by
the control signal 𝑢(𝑡) according to a PWM technique (Pulse-Width
Modulation).

Adopting a model that considers the mean value of the inverter
voltage, the effects of switching 𝑆1 and 𝑆2 on and off can be represented
by the gain 𝐾PWM = 𝑉𝑐𝑐∕(2 ⋅ 𝑉𝑡𝑟𝑖) which multiplies the control signal 𝑢(𝑡)
(Chen, Lai, Tan, & Tse, 2007). In this case, 𝑉𝑐𝑐 is the DC link voltage and
𝑉𝑡𝑟𝑖 is the amplitude of PWM triangular signal.

Loads at the inverter output are represented by the connection in
parallel of an admittance 𝑌0(𝑡) and a current source 𝑖𝑑 (𝑡) (Pereira et al.,
2014). 𝑌0(𝑡) describes the behavior of linear loads, whose currents have
sinusoidal waveform and are in phase with the corresponding voltages.
Thus, 𝑌0(𝑡) is represented by a linear, time-varying element defined by

𝑌0(𝑡) ∈ 𝛥, 𝛥 ∶= {𝑌0(𝑡) ∈ R ∶ 𝑌𝑚𝑖𝑛 ≤ 𝑌0(𝑡) ≤ 𝑌𝑚𝑎𝑥}, (1)

where its lower and upper limits, denoted here by 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥, are
defined by the nominal load (𝑌𝑚𝑖𝑛) and the lowest load (𝑌𝑚𝑎𝑥) of the
UPS. On the other hand, the current source 𝑖𝑑 (𝑡) represents a harmonic
disturbance caused by nonlinear loads.

In a state-space framework, the state vector 𝐱𝐩(𝑡) = [𝑖(𝑡) 𝑣𝑜𝑢𝑡(𝑡)]′ is
composed of the inductor current 𝑖(𝑡) and the capacitor voltage 𝑣𝑜𝑢𝑡(𝑡).
Based on this state vector, dynamic equations describing the behavior
of the UPS can be stated as follows (Pereira et al., 2014):

⎧

⎪

⎨

⎪

⎩

�̇�𝑝(𝑡) = 𝐀𝑝
(

𝑌0(𝑡)
)

𝐱𝑝(𝑡) + 𝐁𝑝 𝑢(𝑡) + 𝐁𝑑𝑝 𝑖𝑑 (𝑡)

𝑦𝑝(𝑡) = 𝐂𝑝 𝐱𝑝(𝑡)
𝑒(𝑡) = 𝑟(𝑡) − 𝑦𝑝(𝑡),

(2)

where 𝑦𝑝(𝑡) is the voltage to be controlled, 𝑟(𝑡) is the voltage reference to
be tracked by 𝑦𝑝(𝑡), and 𝑒(𝑡) is the tracking error. Matrices 𝐀𝑝
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, 𝐁𝑝,
𝐁𝑑𝑝 , and 𝐂𝑝 are obtained by circuit analysis and given by the following
expressions.
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It should be observed that the matrix 𝐀𝑝
(

𝑌0(𝑡)
)

changes with the
load admittance 𝑌0(𝑡) connected at the inverter output, thus changing
the dynamic behavior of the system. This fact requires the use of robust
control methods to ensure an adequate level of performance under
parametric uncertainties.

3. Internal model controllers

In this section, it is detailed the formulation of resonant and repeti-
tive controllers based on the IMP.

3.1. Resonant controller

According to the IMP, a closed loop stable system can track a
sinusoidal reference with frequency 𝜔0 and also completely reject
disturbances at this frequency if the following term is inserted into the
controller transfer function:

𝐺𝑐 (𝑠) =
1

𝑠2 +𝑤2
0

. (3)

Hence, 𝐺𝑐 (𝑠) presents a resonance peak with infinite magnitude at the
frequency of the signal to be rejected or followed, which is the main
characteristic of a resonant controller (Chen, 1995).

Since 𝐺𝑐 (𝑠) has two marginally stable poles on the imaginary axis
(±𝑗𝜔0), it is usual to add two zeros to improve closed-loop stability
(Pereira et al., 2014). Therefore, the resonant controller transfer func-
tion can be defined as follows, where 𝑘2, 𝑘3, and 𝑘4 are constants to be
determined.

𝐺𝑟𝑠(𝑠) =
𝑘2(𝑠2 + 𝜔2

0) + 𝑘4𝑠 + 𝑘3
𝑠2 +𝑤2

0

, (4)

One possible realization of (4) in the state space is
{

�̇�𝑟𝑠(𝑡) = 𝐀𝑟𝑠 𝐱𝑟𝑠(𝑡) + 𝐁𝑟𝑠 𝑢𝑟𝑠(𝑡)

𝑦𝑟𝑠(𝑡) = 𝐂𝑟𝑠 𝐱𝑟𝑠(𝑡) +𝐷𝑟𝑠 𝑢𝑟𝑠(𝑡),
(5)

where 𝐱𝑟𝑠(𝑡) = [𝑥𝑟𝑠1(𝑡) 𝑥𝑟𝑠2(𝑡)]′ ∈ R2 is the state vector, 𝑢𝑟𝑠(𝑡) and 𝑦𝑟𝑠(𝑡),
respectively, are the input and output signals of the resonant controller.
Remaining controller matrices are defined below for a given reference
frequency 𝜔0.

𝐀𝑟𝑠 =
[

0 1
−𝜔2

0 0

]

, 𝐁𝑟𝑠 =
[

0
1

]

,

𝐂𝑟𝑠 =
[

𝑘3 𝑘4
]

, 𝐷𝑟𝑠 = 𝑘2.
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