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A B S T R A C T

In this paper, a novel robust model predictive controller (R-MPC) for wave energy converters (WECs) is
proposed. The controller combines a constrained function-based predictive controller that is responsible for
ensuring maximum power extraction and a local model that compensates for system parametric uncertainties
and model mismatches. Laguerre polynomials have been deployed to alleviate the computational burden usually
associated with the standard MPC techniques. The computer simulation results show that the R-MPC strategy
has produced satisfactory and computationally efficient performance with respect to maximizing the captured
power, increasing the power conversion efficiency, and enhancing the power take-off (PTO) utilization.

1. Introduction

Wave energy converters (WECs) are devices that capture the energy
contained in traveling sea waves and convert them to useful energy
(electricity) via a power take-off (PTO) system (Eriksson, 2007). A
schematic of a grid-connected point absorber wave energy converter
(WEC) is described in Fig. 1, which is made of a heaving body (buoy), a
direct-drive permanent magnet linear generator (PMLG), an intercon-
necting tether, and auxiliary (restoring) springs. The energy capture
capability of the WEC is dependent on the site of operation, buoy’s
geometry, PTO efficiency, and adopted control strategy.

Properly designed control strategy can increase the WEC energy
yield, down size the required PTO rating, and prolong the lifetime
of the system, thus making the system more feasible economically
(Tedeschi & Molinas, 2012). Numerous WEC control techniques have
been proposed in the literature, where almost all of them are based
on the principle of reactive control proposed in Budal and Falnes
(1980). Robust hierarchical control schemes, consisting of a high-level
suboptimal buoy velocity reference generator and a low-level servo
control loop, are presented in Fusco and Ringwood (2014a, b), Jama,
Noura, Wahyudie, and Assi (2015) and Wahyudie, Jama, Saeed, Nandar,
and Harib (2015, 2017).

Recently, the effectiveness of model predictive control (MPC) in
controlling the WECs has been also discussed in the literature. Predictive
controllers offer some exclusive features that have made them such an
attractive control solution in the industry. To mention a few, predictive
control, as the name implies, optimally generates the control law for
each sampling instant based on the predicted future behavior of the
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system. In addition, it provides a ready platform to incorporate system
limitations and constraints, which makes the anticipative nature of the
controller further useful (Xi, Li, & Lin, 2013). However, these advantages
come at the expense of increased computational complexity, especially
for high order systems. In addition, the dependency of controllers on
the system mathematical model jeopardizes its practical effectiveness.
Therefore, having a fairly accurate mathematical model is of paramount
importance (Xi et al., 2013). Classical constrained linear MPC strategies
have been proposed to tackle the control problem in the mechanical side
of the WEC (Hals, Falnes, & Moan, 2011; Li & Belmont, 2014). These
efforts were based on maximizing captured energy of the WECs while
limiting the buoy displacement and the PTO force. A modified linear
MPC strategy, in which the PMLG copper losses are included, has been
also addressed (Jaen, Andrade, & Santana, 2013). Furthermore, a con-
strained nonlinear MPC has been proposed to control two-body heaving
WECs (Richter, Magana, Sawodny, & Brekken, 2013). In Li (2015), MPC
method for controlling WECs using a combination of pseudo-spectral
and differential flatness techniques is proposed. The method tackles
the problems of non-convexity and non-linearity associated with the
cost function, constraints, and the system model. A direct transcription
optimal control law using Galerkin method along with a truncated
Fourier series as basis functions is reported in Bacelli and Ringwood
(2015).

In this work, a novel robust model predictive controller is proposed,
which maximizes the energy output of the heaving WEC while respect-
ing its physical limitations. The suggested control strategy is a genuine
improvement over that proposed in Jama (2015) and Jama, Wahyudie,
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Fig. 1. Point absorber WEC system.

Assi, and Noura (2014). The controller consists of two main parts:
(1) a sub-optimal reference-less function-based predictive controller
and (2) a local model that compensates for the dynamics that are not
captured by the predictive controller due to parametric uncertainties
and external disturbances. The computational complexity usually asso-
ciated with standard MPC is alleviated by parameterizing the PTO force
using orthonormal polynomials. In addition, the local model ensures
that the energy flow remains positive (i.e., from the sea to the grid)
regardless of the sea-state characteristics. The local model contribution
is designed so that it does not violate the limitations imposed by the
predictive controller. The effectiveness of the proposed controller has
been assessed through computer simulations by comparing it to other
control strategies.

This paper is organized as follows. The point absorber WEC model is
described in Section 2. The formulation of the proposed control strategy
is presented in Section 3. The simulation results and the corresponding
discussions are found in Section 4. Conclusions are given in Section 5.

2. Point absorber model

2.1. Equation of motion

The device is a single-body heaving wave energy converter oscillat-
ing against a fixed reference (i.e., the sea bed), as shown in Fig. 1. The
submerged part of the buoy is semispherical. The forces acting on the
system can be separated into two groups, the hydrodynamic forces 𝑓ℎ(𝑡)
and the mechanical PTO forces 𝑓𝑚(𝑡) (Eriksson, 2007). Therefore, the
governing equation of motion can be written as

𝑓ℎ(𝑡) + 𝑓𝑚(𝑡) = 𝑚𝑎(𝑡), (1)

where 𝑚 is the total mass of the oscillating body and 𝑎(𝑡) is the buoy
heave acceleration.

2.2. Hydrodynamic model

The hydrodynamic forces 𝑓ℎ(𝑡) can be decomposed into the following
(Falnes, 2002):

𝑓ℎ(𝑡) = 𝑓𝑒𝑥(𝑡) + 𝑓𝑟(𝑡) + 𝑓𝑏(𝑡) + 𝑓𝑙(𝑡), (2)

where 𝑓𝑒𝑥(𝑡) is the wave excitation force, 𝑓𝑟(𝑡) is the radiation force,
𝑓𝑏(𝑡) is the hydrostatic buoyancy force, and 𝑓𝑙(𝑡) is the losses force that

could result from known or unknown hydrodynamic forces. Each of the
mentioned forces can be modeled as

𝑓𝑒𝑥(𝑡) = 𝑘𝑒𝑥(𝑡) ∗ 𝜂(𝑡) = ∫

𝑡

−∞
𝑘𝑒𝑥(𝜏)𝜂(𝑡 − 𝜏)𝑑𝜏, (3a)

𝑓𝑟(𝑡) = −𝑚∞𝑎(𝑡) − ∫

𝑡

0
𝑘𝑟(𝜏)𝑣(𝑡 − 𝜏)𝑑𝜏, (3b)

𝑓𝑏(𝑡) = −𝑆𝑏𝑧(𝑡), (3c)
𝑓𝑙(𝑡) = −𝑅𝑙𝑣(𝑡) − 𝑅𝑑 |𝑣(𝑡) − 𝑣𝑤(𝑡)|(𝑣(𝑡) − 𝑣𝑤(𝑡)), (3d)

where 𝑘𝑒𝑥(𝑡) and 𝑘𝑟(𝑡) are the excitation and radiation convolution
kernels, respectively. 𝜂(𝑡), 𝑧(𝑡) and 𝑣(𝑡) are the surface elevation of the
incoming waves, the buoy heave displacement, and the buoy heave
velocity, respectively. The coefficients 𝑆𝑏, 𝑅𝑙 and 𝑅𝑑 represent the buoy-
ancy stiffness, hydrodynamic generic losses resistance and the viscous
drag resistance, respectively. Note that 𝑓𝑏(𝑡) is a function of the buoy
heave displacement 𝑧(𝑡), where 𝑆𝑏 = 𝜌𝑔𝐴𝑤, that is 𝐴𝑤 is the water plane
area, 𝜌 is the sea water density and 𝑔 is the gravitational acceleration.
The hydrodynamic losses force 𝑓𝑙(𝑡) is modeled as a summation of
a linear and non-linear terms, in which the linear term represents a
generic damping (resistive) force, whereas the nonlinear term models
the viscous drag force according to Morison’s equation (Ballard &
Mann, 2013). The viscous drag force is modeled as quadratic function
of the wave–buoy relative velocity, where 𝑣𝑤(𝑡) represents the water
heave velocity when it is held undisturbed. The viscous drag resistance
𝑅𝑑 = 0.5𝜌𝐴𝑤𝐶𝑑 , where 𝐶𝑑 is the drag coefficient (McCormick, 2010).
It is difficult to accurately determine 𝐶𝑑 . However, the experimental
results for a spherical buoy show that it typically varies between 0.7
and 1.5, depending on the Reynolds number (i.e., from 100 to 1 × 105)
(Timmerman & Weelea, 1999). The constant 𝑚∞ is the hydrodynamic
added mass at infinite frequency.

Remark. It is important to mention here that due to the spherical
geometry of the buoy, the buoy water plane area 𝐴𝑤 varies as the buoy
heaves, which will introduce non-linear dynamics to the hydrodynamic
forces such as the excitation (Froude–Krylov) and hydro-static stiffness
forces. However, if the maximum buoy stroke is kept noticeably lower
than the buoy radius, the underlying non-linearities can be minimized.

The hydrodynamic software, WAMIT®, was used to solve the exci-
tation and radiation problems (WAMIT, 2006). The frequency domain
identification method proposed in Guo, Patton, Jin, and Lan (2018)
was utilized to approximate the excitation convolution kernel with a
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