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A B S T R A C T

Detecting early abnormalities in blast furnaces is important for the smooth operation of the iron-making process.
In this paper, recursive transformed component statistical analysis (RTCSA)-based algorithms are developed
to monitor the iron-making process with the task of early abnormality detection. The increments of variables
instead of the absolute measurements are used for RTCSA, in order to decrease the effect of the time-varying
nature of the process. Owing to the peak-like disturbances caused by the switching of hot blast stoves, an online
identification algorithm is designed to locate the disturbance intervals. Then an index-switching scheme is used
for monitoring the process. The effectiveness of the proposed method is verified using the real data of two blast
furnaces. Compared with the conventional methods such as the two-stage principal component analysis, the
increment-based RTCSA can effectively detect early abnormalities in the iron-making process.

1. Introduction

Blast furnace iron-making refers to the continuous process of pro-
ducing molten iron by smelting iron ore, fuel, solvent, and other raw
materials (Chu, Yagi, & Shen, 2006). To ensure the continuity of the
reduction reaction in blast furnace, the primary task of operation is to
keep the furnace running smoothly and steadily (Geerdes, Chaigneau,
& Kurunov, 2015). However, some improper operations, equipment
failures, and fluctuations in the quality of raw materials may cause
unexpected abnormalities, such as the slipping and hanging of the
burden, the cooling and overheating of the thermal state, and gas
channelling (Zhou, Ye, Zhang, & Li, 2016). These abnormalities will
lead to a decline in iron quality and production efficiency, increases in
energy consumption. Some severe abnormalities may cause the damage
of equipment, and even damping down of the blast furnace. Hence, how
to accurately detect the abnormalities in the early stage is critically
important. However, in many iron works, detecting the abnormalities in
blast furnaces still mainly relies on the personal experience of individual
workers, which is highly dependent on the personal skills and sometimes
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it is insensitive. Consequently, an effective diagnosis method for early
abnormalities in blast furnaces is required.

In the last several decades, many research efforts have been made
to diagnose abnormalities in blast furnaces, including machine learning
(Lian, Ning, Aiping, & Yaobin, 2010; Liu, Wang, Mo, & Zhao, 2011;
Liu, Wang, Sha, Sun, & Li, 2011; Tian & Wang, 2010), expert system
(Ladonkin, Zherebin, Chistov, & Paren’kov, 1997; Otsuka, Matoba,
Kajiwara, Kojima, & Yoshida, 1990; Warren & Harvey, 2001), and
multivariate statistical process monitoring (MSPM) (Zhang, Ye, Wang,
& Zhang, 2014; Zhou et al., 2016). In the existing works, most of
the machine learning based abnormality diagnosis approaches for blast
furnaces are about support vector machine (SVM) and its extensions.
Specifically, Tian and Wang (2010) proposed a diagnosis method for
blast furnaces based on SVM ensemble. Liu, Wang, Mo et al. (2011)
presented a multiclass classification approach base on least squares
support vector machine (LS-SVM) for fault diagnosis of blast furnaces.
For the imbalanced data, an optional SVM is proposed to diagnose
faults of blast furnaces (Liu, Wang, Sha et al., 2011). These machine
learning based approaches need not only the training data under normal

https://doi.org/10.1016/j.conengprac.2018.05.012
Received 1 February 2018; Received in revised form 8 May 2018; Accepted 25 May 2018
0967-0661/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.conengprac.2018.05.012
http://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2018.05.012&domain=pdf
mailto:mychen@tsinghua.edu.cn
mailto:zdh@tsinghua.edu.cn
https://doi.org/10.1016/j.conengprac.2018.05.012


J. Shang et al. Control Engineering Practice 77 (2018) 190–200

conditions, but also those with different abnormalities. This limits its
application when the abnormal data are unavailable or rare.

In the literature, the expert system is one of the most popular tech-
niques for diagnosing abnormalities of the blast furnace iron-making
process. Some mature diagnosis methods based on expert system have
been developed and productized (Ganguly, Reddy, & Kumar, 2010;
Le Goc, 2004; Le Goc & Frydman, 2004). These expert systems are
effective with a prerequisite that the process variables, such as pressure,
flow, ingredient, and temperature, are accurately measured. However,
for some iron and steel enterprises, equipment levels and raw material
qualities are difficult to satisfy this requirement. This leads to the
inapplicability of expert systems.

As far as we know, the complexity of the blast furnace iron-making
process makes it difficult to accurately obtain the structure, parameters,
and states of the analytical model. Moreover, due to the lack of
direct measurements of inner variables, it is difficult to characterize
the complex reaction process inside the blast furnace based on the
qualitative knowledge. Therefore, data-driven methods are relatively
feasible for monitoring the blast furnace iron-making process. As a main
branch of data-driven methods, MSPM utilizes multivariate statistical
analysis to cope with data. Compared with machine learning, MSPM
generally does not require data under abnormal conditions to train
models. In the past decades, there have been extensive studies on MSPM
(Ding, 2014; Ge, Song, & Gao, 2013; Ji, He, Shang, & Zhou, 2016,
2017; Kruger & Xie, 2012; Qin, 2003, 2012; Yin, Ding, Xie, & Luo,
2014). One of its representatives, principal component analysis (PCA),
has been successfully applied in numerous industrial processes (Ge &
Song, 2007; Jiang, Yan, & Huang, 2016; Kruger, Kumar, & Littler, 2007;
Kruger, Zhou, & Irwin, 2004; Liu, Kruger, Littler, Xie, & Wang, 2009;
Lu, Gao, & Wang, 2004; Mehran & Movahhedinia, 2018; Raveendran
& Huang, 2017; Sedghi, Sadeghian, & Huang, 2017; Thornhill, Shah,
Huang, & Vishnubhotla, 2002; Zhou, Ma, Li, Yang, Zhang, & Li, 2014).
It has also been adopted to monitor abnormalities for blast furnace iron-
making processes. Based on PCA, Zhang et al. (2014) proposed a two-
stage PCA algorithm to handle the peak-like disturbances caused by the
switching of hot blast stoves. Its application on real data from a blast
furnace indicates its effectiveness in detecting abnormalities. Besides,
Zhou et al. (2016) proposed a convex hull based PCA (CHPCA) approach
by replacing 𝑇 2 statistic with the convex hull based detection logic.
Its moving window version, called moving window convex hull based
PCA (MWCHPCA), was also proposed for coping with the time-varying
characteristics of process variables. Recently, Shang, Chen, Ji, and
Zhou (2017) proposed an MSPM method called recursive transformed
component statistical analysis (RTCSA), which can effectively detect
incipient faults. In fact, the detection of incipient faults share many
similarities with that of early abnormalities in blast furnaces. However,
RTCSA can only cope with stationary process data, which limits its
application in monitoring the blast furnace iron-making process.

In this paper, we propose an increment-based RTCSA with an index-
switching scheme. It mainly uses the relative changes rather than abso-
lute measurements. The difference technique is used to obtain the incre-
ments of the measured variables. Because the fluctuations of increments
are less violent than those of absolute measurements when the process
is under normal conditions, this technique decreases the effect of the
time-varying nature of the process. Owing to the peak-like disturbances
caused by the switching of hot blast stoves, an identification algorithm
based on the variation of the hot blast pressure is designed to locate
the disturbance intervals. During online process monitoring, once the
disturbance interval is determined, the index-switching scheme is used
for monitoring the process. This effectively decreases false alarms when
the blast furnace is affected by the switching of hot blast stoves.

The remainder of this paper is organized as follows. The detailed
description of the blast furnace iron-making process and the problem
formulation are given in Section 2. RTCSA is briefly reviewed in
Section 3. The main content of the proposed method is elaborated in
Section 4, including the identification of disturbance intervals and the

Fig. 1. A schematic diagram of blast furnace (Shang, Chen, Ji, Zhou, Zhang, &
Li, 2017).

increment-based RTCSA. In Section 5, the practical data collected from
two blast furnaces of Guangxi Liuzhou Iron and Steel (Group) Company
of China are used to verify the effectiveness of the proposed method.
Conclusions are given in Section 6.

2. Process description and problem formulation

In the area of iron-making industry, blast furnaces are the major
reactors used for reducing molten iron from oxide ores (Chu et al.,
2006). They are large and vertical metallurgical furnaces with complex
structures. The principal function of a blast furnace is to continuously
produce liquid metal (Radhakrishnan & Mohamed, 2000).

The schematic diagram of a blast furnace is illustrated in Fig. 1.
The furnace charges including raw materials, iron ore, coke, and flux
are loaded into the blast furnace from the top, and move from the top
to the bottom. High-pressure hot blast is blown into the tuyere at the
lower part of the blast furnace. The fuel burns in front of the tuyere to
form hot gas, which constantly moves upward and interacts with the
descending charge. The descending burden is heated by the ascending
hot gas stream, and a series of physicochemical reactions occur during
the process. Finally, liquid metal and solid-state slag are formed, and
released from the taphole regularly (Chu et al., 2006).

As discussed in Section 1, the unexpected abnormal conditions may
occur in the process, owing to the variations of raw material qualities,
inappropriate operation, and equipment failures. In blast furnace iron-
making processes, one of the most common abnormalities is hanging,
which probably leads to economic losses due to the reduction of
production efficiency. Hanging in a blast furnace means that the furnace
charge stops descending. Then, a space filled with high-pressure gas and
void of charge will be formed. If the hanging is not relieved by some
manual operations, it may trigger the slipping of the burden, which
means that unprepared furnace charge falls uncontrollably and it may
cool off the blast furnace. Therefore, it is necessary to detect hanging in
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