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Given the importance of wave excitation force prediction in most advanced control schemes for wave energy
converters, where every new wave force estimation becomes available every fraction of second, the main
objective of this paper is to perform a short-term wave prediction that can meet a trade-off between low
computational complexity, limited memory usage and accuracy. To this aim, two prediction algorithms
are proposed using Kalman filtering theory. The proposed prediction methods are evaluated by using real

1. Introduction

Wave energy converters (WECs) are devices used to produce elec-
trical energy from wave movements. A schematic example of a WEC is
given in Fig. 1: an oscillating body (the captor or primary converter)
moves under the action of waves and is connected to a Power-Take-Off
(PTO) system; the PTO, by exercising an appropriate force on the captor,
converts its mechanical energy into electrical energy. The PTO can be
a linear electric generator, or a multistage device, such as a hydraulic
motor connected to a rotary electric generator.

The PTO can be used as an actuator to adjust the natural response of
the captor to waves, in order to maximize the extracted energy. The ideal
conditions for optimal energy absorption have been studied in Falnes
(2002), showing that an energy maximizing controller requires future
knowledge of the wave excitation force F,,, that is, the force exerted
by the incoming wave on the captor. Among the many different ap-
proaches to hydrodynamic control of WECs, see Korde and Ringwood
(2016) for a thorough review, latching control (Babarit & Clément,
2006; Saupe, Gilloteaux, Bozonnet, Creff, & Tona, 2014), declutching
control (Babarit, Guglielmi, & Clément, 2009), and model predictive
control (MPC) (Li & Belmont, 2014) are examples of strategies relying,
directly or indirectly, on this knowledge. In the MPC context, for
instance, the complete control scheme must include an online algorithm
to compute future values of the wave excitation force over the prediction
horizon, as shown in Fig. 2.

Notice that, while it is relatively straightforward to measure exci-
tation force using a dedicated experiment and a well-positioned force
sensor (Nguyen & Tona, 2017), only indirect measurements or estima-
tions are possible during normal WEC operation. Two experimentally-
validated methods for wave force estimation from available measure-
ments are described in Nguyen and Tona (2017). Assuming that
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local wave elevation measurements are possible during WEC operation,
another, less direct, approach could consist of computing future values
of the wave excitation force from wave elevation predictions, though
this would require an inconvenient increase of the prediction horizon,
to cope with the non-causal nature of the impulse function relating wave
elevation to wave excitation force. Indeed, for its important role in the
optimization of WEC energy yield, short-term wave forecasting, with a
particular focus on wave elevation, has drawn a lot of attention in the
hydrodynamic control community.

A first possible approach to perform short-term wave forecasting is
spatial prediction, using up-wave measurements from sensors installed
around the location of a WEC (Paparella et al., 2015; Serafino, Lugni,
& Soldovieri, 2010; Tedd & Frigaard, 2007). The method is reported to
forecast quite long prediction horizons with a good performance (Bel-
mont, Horwood, Thurley, & Baker, 2006). However the forecasting
model can become very complex, since the wave propagation nonlinear-
ities or/and the possible multi-directionality of waves have to be taken
into account (Frigaard & Brorsen, 1995).

A second approach, that has become popular in the last years because
of its simplicity, is to use past time series of local measurements or esti-
mates, at the float position. In Fusco and Ringwood (2010), using real
wave elevation data, Fusco and Ringwood show that a relatively simple
linear auto-regressive (AR) model can perform quite well, provided that
the high-frequency content is filtered out from the time series data.
To avoid introducing a phase lag, the use of a non-causal zero-phase
filter is advocated. The solution is based on a batch-processing approach,
which also includes a computationally-expensive nonlinear least squares
problem to be solved and a spectral analysis to be performed in order
to compute an optimal sampling period for all the computations. It
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Fig. 1. Schematic diagram of a wave energy converter of the point-absorber
type.

is worth noticing that considering a more complex model structure
in this context, namely an auto regressive moving average (ARMA)
model instead of an AR model, does not seem to bring any particular
benefit (Yerai & John, 2017). In Fischer, Kracht, and Perez-Becker
(2012), an iterative, more easily implementable approach is proposed,
based on a bank of least squares estimators. However, as it will be shown
later, it is implicitly assumed that the sea state is constant. Furthermore,
as noticed in Fischer et al. (2012), the prediction performance degrades
as quickly as the prediction horizon increases.

Two novel solutions for short-term wave forecasting are proposed in
this paper. They are also based on past time series of local WEC mea-
surements or estimates. Implementation aspects such as computational
complexity and accuracy are investigated. Their performance is assessed
using wave excitation force time series, obtained from data collected
in the wave basin of Aalborg University, on a lab-scale wave energy
converter prototype.

Three main features of the proposed solutions, built around AR-
model estimation, are:

« It is shown that, for the first method, the multi-step ahead error
criterion adopted in Fusco and Ringwood (2010) is a particular
case of our criterion.

« The first method is based on the extended Kalman filter. Hence
the algorithm is recursive and easy to implement.

« To improve the performance, overcoming the error accumula-
tion problem that comes with the first method, an alternative
approach is proposed. It builds an independent model for each
horizon, using an adaptive Kalman filter. It is also shown that the
approach in Fischer et al. (2012) is a limiting case of ours, when
the sea state is assumed to be constant.

The paper is organized as follows. The problem is formulated in
Section 2 together with a review from the literature. Then the multi-step
error minimization approach with extended Kalman filter is proposed in
Section 3, while in Section 4, an adaptive Kalman filtering approach is
considered. In Section 5, the available data as well as the prediction
results are presented. In Section 6 the computation of a forecasting
interval is considered. Some conclusions are drawn in Section 7.
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2. Problem formulation

Given available estimates {I:“ex(l )} of the wave excitation force taken
at discrete time instants / = 0, 1, ..., k, where k is the current time, our
objective is to predict the wave excitation force at time k + 1, k + 2,
..., k+ N,, where N, is the prediction horizon. For this purpose, some
prediction methods in the literature are first reviewed. These methods
will be compared to the new approaches developed in the paper. In the
following, for simplicity denote y(k) = E,, (k).

2.1. Decomposition based approach

This approach is based on the assumption that y(k) may be regarded
as the sum of several sinusoidal waves of different frequencies, ampli-
tudes and phases,

m
W)=Y A;sin(k +¢)) €h)
j=1
where m is the total number of components, A s @; and ¢, are the
amplitude, the angular wave frequency and the phase angle of the jth
component, respectively (Hals, Falnes, & Moan, 2011). Note that in
the model (1) the frequencies o; are known and fixed, while A j and
¢, are unknown. The parameters A; and ¢; can be estimated through
least squares or Kalman filter procedures and can be used to forecast the
future wave excitation force (Fusco & Ringwood, 2010).

The main advantage of the model (1) is its direct physical meaning.
However the constant frequencies assumption is rather restrictive and
unrealistic, since it is well known that the wave excitation force spec-
trum is time-varying (Jonkman, 2007). Consequently, it is not reliable
to use the model (1) to predict the future wave excitation force.

2.2. Sinusoidal extrapolation based approach

The idea is to model y(k) as a single sinusoidal signal with a time-
varying frequency, amplitude and phase,

y(k) = A(k) sin (w(k)k + ¢(k)) (2)

where A(k), w(k) and ¢(k) are unknown.

Evidently, the model (2) is nonlinear in A(k), w(k) and ¢(k). As a
consequence, a linear recursive estimator cannot be directly applied. It
is possible, however, to use a truncated Taylor expansion of (2), and
then an extended Kalman filter (EKF) to estimate the values of A(k),
w(k) and ¢(k) (Fusco & Ringwood, 2010).

A direct physical meaning is also an advantage of model (2).
However, it is clear that using one sinusoid to describe a wave is
only effective for very narrow-banded wave systems. In addition, the
extension to a model with multiple time-varying frequencies is not as
straightforward as it may seem.
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Fig. 2. Wave excitation force prediction in the context of MPC.
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