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A B S T R A C T

A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown
but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb
exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction
with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s
limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only
the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of
the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are
proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance
and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements.

1. Introduction

In the recent years, the interest in exoskeleton has increased in
many application fields. Especially, medical applications paid increasing
attention to exoskeletons to obtain more efficient rehabilitation thera-
pies (Burgar, Lum, Shor, & Van der Loos, 2000; Krebs, Volpe, Aisen, &
Hogan, 2000; Marini et al., 2017; Masiero & Armani, 2011; Veerbeek,
Langbroek-Amersfoort, van Wegen, Meskers, & Kwakkel, 2017; Xu, Chu,
& Rogers, 2014), and to provide suitable health care to disabled patients
and elderly people not only in hospitals but also in their own homes.
The problem is that, such robotic systems are very complex and hard
to model owing to their direct interaction with the user’s limb. Even
if the dynamics of the exoskeleton is known, that of the human limb
is typically unknown and greatly variable form a person to another.
Therefore, the use of exoskeleton in interaction with a human subject,
depends on the quality of the associated controller, in order to obtain
satisfactory performances.

Several control strategies for exoskeletons have been proposed in the
literature, for example: Adaptive control (Pehlivan, Losey, & O’Malley,
2016; Wei, Balasubramanian, Xu, & He, 2008), EMG-based control
(Kiguchi, Rahman, Sasaki, & Teramoto, 2008; Loconsole, Dettori, Frisoli,
Avizzano, & Bergamasco, 2014), Admittance control (Culmer et al.,
2010), Fuzzy and backstepping control (Chen, Li, & Chen, 2017; Li, Su,
Li, & Su, 2015), Impedance control and reinforcement learning (Li et
al., 2017) and Coordination control (Li, Kang, Xiao, & Song, 2017). A
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recent review on control strategies for upper limb exoskeletons can be
found in Proietti, Crocher, Roby-Brami, and Jarrassé (2016).

Among the existing robust control schemes, this work focuses on
Sliding Mode Control (SMC) which is a powerful approach to con-
trol robotic systems with uncertain dynamics and bounded distur-
bances (Park, Choi, & Kong, 2007; Yuri, Christopher, Leonid, & Arie,
2014; Zhihong, Paplinski, & Wu, 1994). This nonlinear control strategy
works by dragging the non-linear path to a predetermined hyperplane
so-called sliding surface, then the system stays confined to the sliding
surface while sliding along to the origin (Slotine, Li, et al., 1991).
In general, conventional SMC uses linear sliding surface which can
only achieve asymptotic stability of the system during the sliding
mode phase (Perruquetti & Barbot, 2002). Thereafter, more advanced
techniques such as Terminal SMC (TSMC) were proposed (Feng, Zhou,
Zheng, & Han, 2016; Zhihong & Yu, 1997) which can guarantee finite
time convergence of the tracking error to zero. The Fast Terminal
Sliding Mode (FTSM) surface has been introduced to further reduce the
finite-settling-time (Madani, Daachi, & Djouani, 2017; Yu & Zhihong,
2002). However, TSMC and FTSM suffer from singularity problems due
to the use of fractional power in sliding surface design. Therefore, a
Nonsingular TSMC (NTSMC) have been proposed in Feng, Yu, and Man
(2002), Komurcugil (2013) and Madani, Daachi, and Djouani (2016), to
overcome the singularity problem. In Peng, Jianjun, Lina, and Zhiqiang
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(2015) an Integral TSMC (ITSMC) is proposed to eliminate singular-
ities and lead to less chattering effect compared to the conventional
SMC (Morshed & Fekih, 2015).

This paper proposes an Adaptive ITSMC (AITSMC) for upper limb
exoskeletons in order to perform passive rehabilitation. First, the dy-
namic modeling of the considered exoskeleton is introduced as well as
properties and assumptions. Then, an integral terminal sliding mode
surface is used to guarantee tracking errors converge to zero in finite
time when the sliding surface is reached. The proposed ITSMC is thus
designed to guarantee the reaching of the sliding mode, as well as the
good tracking performance in finite time. With this control scheme,
the singularity problem is removed without adding any constraints.
Furthermore, the lack of knowledge of the system uncertainties bounds
leads to set them to very high values which may result in intense control
torques. To address this problem an adaptive approach is proposed
to adaptively tune the uncertainties bounds while guaranteeing finite
time convergence. Finally, to validate the proposed control scheme,
experiments were carried out with a healthy subject using a 3 Degrees
of Freedom (DoF) upper limb exoskeleton called ULEL1 to perform
trajectories that correspond to passive arm movements.

The rest of the paper is set as follows. Section 2 expresses the
dynamic modeling and model properties and assumptions. In Section 3
controller design is presented. Section 4 introduces an adaptation
method to tune the controller gains. Section 5 shows the implementation
of the proposed approach for the upper limb exoskeleton ULEL and
experimental results in performing passive movements with healthy
subjects. Conclusion is presented in Section 6.

2. Dynamic modeling

The dynamic behavior of robotic systems can be expressed by the
well known rigid body’s dynamic equation in Khalil and Dombre (2004)
as

𝑀(𝑞)𝑞 +𝐻(𝑞, �̇�) = 𝜏(𝑡), (1)

with

𝐻(𝑞, �̇�) = 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) +𝐷(�̇�), (2)

where 𝑞 ∈ R𝑛, �̇� ∈ R𝑛 and 𝑞 ∈ R𝑛 are respectively the joint positions,
velocities and accelerations; 𝑀(𝑞) ∈ R𝑛×𝑛 is the inertia matrix; 𝐶(𝑞, �̇�) ∈
R𝑛×𝑛 is the Coriolis/centrifugal matrix; 𝐺(𝑞) ∈ R𝑛 is the gravity vector;
𝐷(�̇�) ∈ R𝑛 is the dissipation term; 𝜏(𝑡) ∈ R𝑛 is the applied torque vector.

In the case of human-exoskeleton system, the dynamic model (1) can
be used with some known parts and unknown parts. The terms 𝑀(𝑞),
𝐻(𝑞, �̇�) and 𝜏(𝑡) can be written in the form

⎧

⎪

⎨

⎪

⎩

𝜏(𝑡) = 𝜏𝑁 (𝑡) + 𝜏𝛥(𝑡)
𝑀(𝑞) = 𝑀𝑁 (𝑞) +𝑀𝛥(𝑞)
𝐻(𝑞, �̇�) = 𝐻𝑁 (𝑞, �̇�) +𝐻𝛥(𝑞, �̇�)

, (3)

where 𝜏𝑁 (𝑡), 𝑀𝑁 (𝑞) and 𝐻𝑁 (𝑞, �̇�) are known nominal parts and 𝜏𝛥(𝑡),
𝑀𝛥(𝑞) and 𝐻𝛥(𝑞, �̇�) are unknown parts. The term 𝜏𝑁 (𝑡) represents the
actuated torque generated by the exoskeleton’s motors and 𝜏𝛥(𝑡) includes
the torques applied by the human arm on the exoskeleton and external
disturbances.

Using (3), the dynamic equation (1) can be written in the following
form :

𝑀𝑁 (𝑞)𝑞 +𝐻𝑁 (𝑞, �̇�) = 𝜏𝑁 (𝑡) + 𝛥(𝑡), (4)

where 𝛥(𝑡) is the system uncertainties defined as

𝛥(𝑡) = 𝜏𝛥(𝑡) −𝑀𝛥(𝑞)𝑞 −𝐻𝛥(𝑞, �̇�), (5)

which is related to the position, velocity and acceleration signals.

1 Upper Limb Exoskeleton of LISSI.

Remark 1. Only the position and velocity are measurable in our ap-
plication setup using an exoskeleton. Therefore, the use of acceleration
term in (5) is the key problem for controller designing. This issue will
be addressed in the following of the paper.

2.1. Model properties and assumptions

In the case of robotic systems with only pivot joints (revolute joints),
the following properties are obviously verified for any 𝑞 ∈ R𝑛.

Property 1. The inertia terms 𝑀(𝑞) and 𝑀𝑁 (𝑞) are symmetric positive def-
inite matrices. Moreover, these matrices are bounded (Ghorbel, Srinivasan,
& Spong, 1998)
{

𝑚𝐼 ≤𝑀(𝑞) ≤ 𝑚𝐼
𝑚𝑁𝐼 ≤𝑀𝑁 (𝑞) ≤ 𝑚𝑁𝐼

, (6)

where 𝑚, 𝑚, 𝑚𝑁 and 𝑚𝑁 are positive constants such that 0 < 𝑚 < 𝑚 and
0 < 𝑚𝑁 < 𝑚𝑁 . Therefore, it is straightforward that 𝑀−1(𝑞) and 𝑀−1

𝑁 (𝑞) are
also positives and bounded as
{

𝑚−1𝐼 ≤𝑀−1(𝑞) ≤ 𝑚−1𝐼
𝑚−1
𝑁 𝐼 ≤𝑀−1

𝑁 (𝑞) ≤ 𝑚−1
𝑁 𝐼

. (7)

Property 2. Using the euclidean norm, it can be written that
(Mulero Martínez, 2007)

‖𝐶(𝑞, �̇�)‖ ≤ 𝑐‖�̇�‖, (8)

where 𝑐 is a non-negative constant.

As the exoskeleton interacts with the human arm, it is considered
that the term 𝛥(𝑡) is unknown. Only the following assumptions are
adopted.

Assumption 1. The gravity vector 𝐺(𝑞) is bounded such as ‖𝐺(𝑞)‖ ≤
𝑔1 + 𝑔2‖𝑞‖, where 𝑔1 and 𝑔2 are non-negative constants.

Assumption 2. The dissipation vector𝐷(�̇�) is bounded such as ‖𝐷(�̇�)‖ ≤
𝑑1 + 𝑑2‖�̇�‖, where 𝑑1 and 𝑑2 are non-negative constants.

Assumption 3. The torque vector 𝜏𝛥(𝑡) is bounded such as ‖𝜏𝛥(𝑡)‖ ≤ 𝜏𝛥,
where 𝜏𝛥 is a non-negative constant.

Considering Property 2, and Assumptions 1–3, then𝐻(𝑞, �̇�) in (2) can
be upper-bounded as follows:

‖𝐻(𝑞, �̇�)‖ ≤ 𝑔1 + 𝑑1 + 𝑔2‖𝑞‖ + 𝑑2‖�̇�‖ + 𝑐‖�̇�‖2. (9)

Assume that 𝐻𝑁 (𝑞, �̇�) and 𝐻𝛥(𝑞, �̇�) are upper-bounded as follows:
{

‖𝐻𝑁 (𝑞, �̇�)‖ < ℎ𝑁1 + ℎ𝑁2‖𝑞‖ + ℎ𝑁3‖�̇�‖ + ℎ𝑁4‖�̇�‖
2

‖𝐻𝛥(𝑞, �̇�)‖ < ℎ𝛥1 + ℎ𝛥2‖𝑞‖ + ℎ𝛥3‖�̇�‖ + ℎ𝛥4‖�̇�‖2
, (10)

where ℎ𝑁1,… , ℎ𝑁4 and ℎ𝛥1,… , ℎ𝛥4 are non-negative constants.
Using (4), the acceleration 𝑞 can be written as

𝑞 =𝑀−1
𝑁 (𝑞)

[

𝜏𝑁 (𝑡) + 𝛥(𝑡) −𝐻𝑁 (𝑞, �̇�)
]

, (11)

then the dynamic model (1) can be written as

𝑞 = 𝑓 (𝑞, �̇�) + 𝜑(𝑞)𝑢(𝑡) + 𝜉(𝑡), (12)

where 𝑢(𝑡) = 𝜏𝑁 (𝑡) represents the control input torque, and the functions
𝑓 (𝑞, �̇�), 𝜑(𝑞) and 𝜉(𝑡) are given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 (𝑞, �̇�) = −𝑀−1
𝑁 (𝑞)𝐻𝑁 (𝑞, �̇�)

𝜑(𝑞) = 𝑀−1
𝑁 (𝑞)

𝜉(𝑡) = 𝑀−1
𝑁 (𝑞)𝛥(𝑡)

. (13)

In what follows, to simplify the writing of the equations, the nota-
tional dependency will be omitted on 𝑢, 𝑓 , 𝜑, 𝜉, 𝛥, 𝑀𝑁 , 𝑀𝛥, 𝐻𝑁 , 𝐻𝛥,
𝜏𝑁 and 𝜏𝛥.
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