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A B S T R A C T

In the context of Smart Monitoring and Fault Detection and Isolation in industrial systems, the aim of Predictive
Maintenance technologies is to predict the happening of process or equipment faults. In order for a Predictive
Maintenance technology to be effective, its predictions have to be both accurate and timely for taking strategic
decisions on maintenance scheduling, in a cost-minimization perspective. A number of Predictive Maintenance
technologies are based on the use of ‘‘health factors’’, quantitative indicators associated with the equipment
wear that exhibit a monotone evolution. In real industrial environment, such indicators are usually affected
by measurement noise and non-uniform sampling time. In this work we present a methodology, formulated as
a stochastic filtering problem, to optimally predict the evolution of the aforementioned health factors based
on noisy and irregularly sampled observations. In particular, a hidden Gamma process model is proposed to
capture the nonnegativity and nonnegativity of the derivative of the health factor. As such filtering problem is
not amenable to a closed form solution, a numerical Monte Carlo approach based on particle filtering is here
employed. An adaptive parameter identification procedure is proposed to achieve the best trade-off between
promptness and low noise sensitivity. Furthermore, a methodology to identify the risk function associated to the
observed equipment based on previous maintenance data is proposed. The present study is motivated and tested
on a real industrial Predictive Maintenance problem in semiconductor manufacturing, with reference to a dry
etching equipment.

1. Introduction

Advanced monitoring is a fundamental activity in the Industry 4.0
scenario to implement control, maintenance, quality, reliability, and
safety policies (Arinton, Caraman, & Korbicz, 2012; Chioua, Bauer,
Chen, Schlake, Sand, Schmidt, et al., 2016; Ma, Dong, Peng, & Zhang,
2017). In particular, Fault Detection and Isolation (FDI) (Ma et al.,
2017) and Predictive Maintenance (PdM) (Nguyen, Do, & Grall, 2015)
technologies have proliferated in the past recent years for diagnosis and
prognosis of process/tool failures (Sikorska, Hodkiewicz, & Ma, 2011).
While the aim of such technologies is similar and partly overlapped,
PdM technologies are more focused on prognosis. Prognosis can be
defined as the capability to provide early detection of the precursor
and/or incipient fault condition of a component, and to design tools
for managing and predicting the progression of such fault condition
to component failure (Engel, Gilmartin, Bongort, & Hess, 2000). Given
their goal, PdM technologies are typically applied to failures that are
associated with wear and usage of the system/process (Susto, Schirru,
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Pampuri, McLoone, & Beghi, 2015), or, more generally, to failures that
can be predicted in advance (Lewin, 1995; Susto, McLoone, Pagano,
Schirru, Pampuri, & Beghi, 2013). Examples of such type of faults are the
breaking of the source in ion-implantation processes in semiconductor
manufacturing (Susto et al., 2015), the flute wear in cutting tool
equipment (Benkedjouh, Medjaher, Zerhouni, & Rechak, 2015), and the
lifespan of lithium-ion batteries (Liao & Köttig, 2016).

In this work we focus on the so-called ‘Health Factors’ (HFs), an
important concept in prognostic.1 HFs are quantitative indexes used
to define the current status of a tool/process and to assess the future

1 Health Factors are also indicated as ‘Component Health’ (Sikorska et al.,
2011), ‘State of Health’/’Health State’ (Si, Wang, Hu, & Zhou, 2011; Zhou, Stein,
& Ersal, 2017) or as ‘Health Indicators’ (Benkedjouh et al., 2015; Wang, Yu,
Siegel, & Lee, 2008) by different authors and they are closely in relation with
the concept of ‘degradation data’ (Chen, Lio, Ng, & Tsai, 2017).
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statuses of the system under exam (or of one of its components/sub-
systems), and its Remaining Useful Life (RUL) (Bressel, Hilairet, Hissel,
& Bouamama, 2016; Butler & Ringwood, 2010; Wang et al., 2008), so
that strategic decisions regarding maintenance scheduling and dynamic
sampling plans can be taken (Nguyen et al., 2015). Being in direct
relationship with wear, usage or stress of an equipment/component or
system, HFs generally have a monotone evolution. A HF can be of very
different nature: in its simplest form, HFs can be observable parameters
that, thanks to specific domain expertise, can be associated with equip-
ment/process health status. Example of health factors as quantities that
are directly related to system health, such as the thermal index of a
polymeric material (Xie, Jin, Hong, & Van Mullekom, 2017), the scar
width in sliding metal wear (Hu, Li, & Hu, 2017), and the temperature
difference in semiconductor manufacturing epitaxy processes (Susto,
Beghi, & Luca, 2012). HFs can also be the output of Soft Sensor modules
(Souza & Araujo, 2014; Wang, Liu, & Srinivasan, 2010), where the status
health is impossible/costly to be monitored. Moreover, HFs can be the
residual of first principle FDI models (Zhang & Canova, 2015). In fact,
in many practical examples (Arinton et al., 2012; Butler & Ringwood,
2010; Hast, Findeisen, & Streif, 2015; Zhang & Canova, 2015), residuals
have a monotonic behavior and threshold-based policies to maintenance
management are implemented on such quantities. HFs are therefore
relevant quantities in both model-based (Dey, Biron, Tatipamula, Das,
Mohon, Ayalew, et al., 2016; Hast et al., 2015; Xu, Lee, Zhou, & Yang,
2015) and model-free (Arinton et al., 2012; Bakdi, Kouadri, & Bensmail,
2017; Ge, Song, & Gao, 2013; Ma et al., 2017) prognostic approaches.

In the present paper, the problem of designing a HF for Predictive
Maintenance (PdM) purposes is considered (Ding, Yin, Peng, Hao, &
Shen, 2013; Filev, Chinnam, Tseng, & Baruah, 2010; Susto et al.,
2015). In particular, the issue of assessing the probability distribution
of the HF future values given its past measurements is addressed, under
the following assumptions: (i) the HF is monotonically increasing; (ii)
its measurements are subject to random noise that may conceal its
monotonic nature; (iii) measurements are non-uniformly sampled over
time. The aforementioned features are typical traits of HF signals (Butler
& Ringwood, 2010; Gorinevsky, 2004; Saha, Goebel, & Christophersen,
2009; Susto et al., 2012; You, Li, Meng, & Ni, 2010), but they are
generally not simultaneously accounted for in the related literature.
Non-stochastic models (see Si et al., 2011 for a broad review on
RUL estimation) for HFs have been presented in literature, as well
as inspection and intervention approaches for increasing maintenance
actions effectiveness and decreasing the associated costs. However, such
methodologies are well suited for noise-free scenarios and, given the
aforementioned assumptions on the HF signals, it is here proposed
to adopt a stochastic filtering paradigm (Wang, Hussin, & Jefferis,
2012). With the proposed approach, the HF is treated as a stochastic
process, with the possibility to combine prior knowledge on the HF
with statistical information regarding the observed noisy data. A simple
approach to deal with the problem at hand is provided by the Wiener
and Kalman predictors (Abdennadher, Venet, Rojat, Rétif, & Rosset,
2010; Lu, Tu, & Lu, 2007; Susto et al., 2012; Yang & Liu, 1999),
which are statistically optimal for linear Gaussian models. However,
such classical approaches may be considered suboptimal for signals with
the characteristics given in assumptions (i)–(iii). As a matter of fact, far
from being Gaussian, the HF derivative is in this work considered to be
a nonnegative random variable.

Given such premises, a framework for HF filtering and prediction
based on the Gamma distribution is here proposed. PdM applications
employing Gamma distributions has been developed since the 1970s
(Abdel-Hameed, 1975), especially in mechanical and civil engineering
applications (Cinlar, Osman, & Bazoant, 1977; Lawless & Crowder,
2004; Lu, Pandey, & Xie, 2013) and, recently, in industrial environments
(LeSon, Fouladirad, & Barros, 2016). Indeed, if the HF is modeled
as the sum of Gamma distributed random variables, such sum is still
Gamma distributed, with the advantage that convenient estimation and
prediction algorithms can be derived. Given that in real-world industrial

Fig. 1. Gamma probability distributions for different values of 𝑎 and 𝜃.

applications HFs are usually observed with noise, the approach proposed
in this work considers the HF as a monotonic Gamma process (with time-
varying shape parameter) corrupted by Gaussian noise (hidden-Gamma
model). Such assumptions lead to the lack of closed-form solutions
for the estimation of model parameters in the proposed approach.
However, it will be shown that the prediction problem can be efficiently
solved by resorting to particle filtering methods (Alrowaie, Gopaluni,
& Kwok, 2012; Doucet, 1998; Doucet, DeFreitas, & Gordon, 2001),
employing Monte Carlo (MC) simulations to derive the target posterior
distributions. Finally, a recursive procedure to estimate the time-varying
shape parameter is proposed. Such procedure allows to optimize a trade-
off between the need for promptness and noise insensitivity/outlier
rejection.

The paper is organized as follows. In Section 2 the hidden-Gamma
model is presented. In Section 3.1 the principles of Particle Filtering (PF)
are briefly summarized and adapted to Gamma processes. In Section 4 an
adaptive recursive scheme for estimation of monotone HFs is presented.
Section 5 is dedicated to the definition and estimation of an appropriate
Risk Function for the proposed model. In Section 6 some experimental
results on synthetic datasets are reported, whereas in Section 7 a real
PdM semiconductor manufacturing problem related to dry etching is
tackled.2

2. The hidden Gamma process

2.1. Gamma probability distribution

The most notable property of Gamma distributions is their non-
negative support. We consider a random variable 𝑥 with Gamma distri-
bution 𝛤 (𝑎, 𝜃), where 𝑎 is the shape parameter and 𝜃 is the scale factor.
The first two statistical moments of 𝑥 are 𝐸[𝑥] = 𝑎𝜃 and 𝑉 𝑎𝑟[𝑥] = 𝑎𝜃2

and the probability density function (PDF) is 𝑝(𝑥) = 𝑥𝑎−1𝑒−
𝑥
𝜃

𝛤 (𝑎)𝜃𝑎 . Gamma
distributed random variables enjoy the following property:

Property 1 (Infinite Divisibility). If 𝑥1 ∼ 𝛤 (𝑎1, 𝜃) and 𝑥2 ∼ 𝛤 (𝑎2, 𝜃), then
the sum 𝑥 = 𝑥1 + 𝑥2 has a Gamma distribution with shape 𝑎1 + 𝑎2 and scale
factor 𝜃.

The shape of the Gamma probability distribution for different values
of 𝑎 and 𝜃 is shown in Fig. 1.

2 The present work is an extended version of Schirru, Pampuri, and DeNicolao
(2010). Additional material concerns implementation details, the derivation of a
risk function associated with the maintenance operation, and the use of synthetic
data to better assess performance of the algorithms.
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