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Abstract: A multicriteria boolean programming problem with linear cost functions in which
initial coefficients of the cost functions are subject to perturbations is considered. For any
optimal alternative, with respect to parameterized principle of optimality ”from Condorcet
to Pareto”, an appropriate measure of the quality is introduced. This measure corresponds
to the so-called stability function defined earlier for optimal solutions of a generic multicriteria
combinatorial optimization problem with Pareto and lexicographic optimality principles. Various
properties of such function are studied and maximum norm of perturbations for which an optimal
solution preserves its optimality is calculated.
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1. INTRODUCTION

The stability theory has its roots originating from the
definition of a well-posed mathematical problem given in
Hadamard (1903), where it was stated that mathematical
models of physical phenomena should include, among
others, the property of a solution to depend continuously
on the data, in some reasonable topology. In optimization
a question of stability of a problem arises in the case
where the set of feasible solutions (alternatives) and/or
the objective (cost) function depend on parameters. The
presence of such parameters in optimization models is
due to many reasons, for instance inaccuracy of initial
data, non-adequacy of models to real processes, errors
of numerical methods, errors of rounding off and other
factors. Thus it appears to be important to allocate
classes of problems in which small changes of the input
data lead to small changes of the result. The problems
with such properties are called stable. It is obvious that
many optimization problems arising in practice cannot
be correctly formulated, analyzed and solved without
exploiting the results of the stability theory.

It is not very surprising that many researchers focus on
analyzing various aspects of stability for large classes of
optimization problems. For example, one can find a vast
annotated bibliography for sensitivity and post-optimal
analysis in integer programming and combinatorial opti-
mization problems in Greenberg (1998).

The main object while studying stability of multicriteria
optimization problems is usually a set of optimal (some-
times referred to as efficient) solutions or alternatives, i.e.
the set of feasible solutions which satisfy a given optimality
principle. In the case where the partial criteria of the
problem have an equal importance, the Pareto optimality
principle, originally proposed in Pareto (1909), is more

often used. Generally, a feasible solution is said to be
Pareto optimal if there is no other feasible solution such
that at least one its objective value getting better does not
deteriorate any other objective values.

If we relax the demand of non-worsening objectives in such
a way that worsening for some objective values is allowed
but the number of objectives which values are allowed
to be deteriorated is restricted above by the number of
objectives with better values, then we get the concept
of Condorcet optimality principle, originally proposed in
Condorcet (1785).

It is clear that the set of optimal solutions defined by
Condorcet optimality principle is a subset of the set of
optimal solutions given by the Pareto optimality princi-
ples, i.e. Pareto optimality principle gives more freedom for
solutions to become optimal compared to the Condorcet
optimality principle.

A frequently used tool of stability theory and post-optimal
analysis is so-called stability radius of some given optimal
solution. In single objective optimization, it gives an upper
bound on a subset of problem parameters for which this
solution remains optimal (see Greenberg (1998) and bibli-
ography therein). There are already similar investigations
in multiobjective case, where the stability radius defines
an extreme level of problem parameter perturbations pre-
serving efficiency of the given solution. For example, in
Emelichev et al. (2002) one can find a large survey on
sensitivity analysis of vector unconstrained integer linear
programming, where the stability radius is a key object
under investigation.

It is important to note that even in single objective case
the stability radius does not provide us with any informa-
tion about the quality of a given solution in the case when
problem data are outside of the stability region. Some



attempts to study the quality of the problem solution in
this case are connected with concepts of stability function,
which was originally proposed in Libura (1999) and Libura
(2000) for scalar combinatorial optimization problems.
Later, some of the results were extended for the case
of multicriteria combinatorial optimization problems with
Pareto and lexicographic optimality principles in Libura
et al. (2006). In Nikulin (2008), the similar questions were
investigated under framework of game theory, more pre-
cisely a stability function for a coalition game with bans,
linear payoffs, antagonistic strategies and parameterized
principle of optimality ”from Nash to Pareto” was studied.

Here we give an extension of the concept of stability func-
tion under the parameterized optimality principle ”from
Condorcet to Pareto”. The paper is structured as follows.
In Section 2, we consider a multicriteria Boolean linear
programming problem. The problem consists in finding the
set of optimal solutions, i.e. alternatives which are optimal
with respect to the chosen optimality principle. In Section
3, for a given solution we introduce an appropriate relative
error as a function of the norm of data perturbations. Af-
terwards, we define so called stability radius as an extreme
level of perturbations of problem parameters for which
the stability function is equal to zero. We give analytical
formula to calculate the value of stability function and
corresponding radius. In Section 4, a short example from
data mining theory is considered to illustrate the way
how the stability function can be used as an efficient tool
for post-optimal analysis. Final remarks and conclusions
appear in Section 5.

2. PROBLEM FORMULATION

We consider a problem with m ≥ 2 cost functions repre-
senting the problem objectives. Let X ⊆ 2{0,1}n

\∅, |X | ≥
2, be a set of feasible solutions or alternatives x :=
{x1, ..., xn}T $= (0, 0, ..., 0)T , where n denotes the problem
size.

For each solution x ∈ X , a vector of cost functions

f(C, x) := (f1(C, x), ..., fm(C, x))T

consists of individual cost functions fi(C, x), i ∈ Im :=
{1, 2, ..., m}, which are defined as linear functions, i.e.:

fi(C, x) := Cix.

Here Ci is i-th row of matrix C = [cij ] ∈ Rm×n
+ , where

Rm×n
+ is a set of m × n matrices with all elements being

positive.

Without loss of generality, we assume that fi(C, x) are
minimized on the set of feasible solutions X for each
i ∈ Im.

Contrary to the single objective case where the concept of
optimal solution is unique, under multicriteria framework
the concept of optimality may vary and is usually based
on binary relations reflecting preferability of one solutions
over others. In its turn, any binary relation generates a
principle of optimality (in other terminology, sometimes
referred as a choice function).

For any x, x′ ∈ X and C ∈ Rm×n
+ , we put

[x, x′, C]+ := |{i ∈ Im : fi(C, x) > fi(C, x′)}| =

|{i ∈ Im : Ci(x − x′) > 0}|;

[x, x′, C]− := |{i ∈ Im : fi(C, x) < fi(C, x′)}| =
|{i ∈ Im : Ci(x − x′) < 0}|;

[x, x′, C]0 := |{i ∈ Im : fi(C, x) = fi(C, x′)}| =
|{i ∈ Im : Ci(x − x′) = 0}|.

Obviously,

[x, x′, C]+ + [x, x′, C]− + [x, x′, C]0 = m. (1)

The binary relations x ≺ x′ of a strict preference between
two feasible solutions x and x′ (x′ is preferred to x) are
given according to the formulae:
- Condorcet (majority) domination relation x ≺µ x′:

[x, x′, C]+ > [x, x′, C]−; (2)

- Pareto domination relation x ≺π x′:

[x, x′, C]+ > (m − 1)[x, x′, C]−. (3)

Note, that
[x, x′, C]+ > ζ · [x, x′, C]−,

where ζ ≥ m − 1, also defines the Pareto domination
relation x ≺π x′, however m − 1 in (3) is the smallest
integer value of ζ which may guarantee x ≺π x′.

A solution x∗ ∈ X is called Condorcet optimal if

µ(x∗, C) = ∅,

where
µ(x∗, C) := {x ∈ X : x∗ ≺µ x}.

We will refer to the set of all Condorcet optimal solutions
as the Condorcet set and denote it by Mm(C).

A solution x∗ ∈ X is called Pareto optimal if

π(x∗, C) = ∅,

where
π(x∗, C) := {x ∈ X : x∗ ≺π x}.

We will refer to the set of all Pareto optimal solutions as
the Pareto set and denote it by P m(C).

The Condorcet principle of optimality realizes the well-
known procedure of decision-making by the majority of
votes. It is easy to understand that the binary relation ≺µ

is not always transitive, not even for m = 3. Indeed, let
X = {x1, x2, x3} and let







f1(x) f2(x) f3(x)
x1 : 1 2 3
x2 : 2 3 1
x3 : 3 1 2






.

Recall that fi(x) → minx∈X , i ∈ I3. Then it is clear
that x2 ≺µ x1 and x3 ≺µ x2, but at the same time
x1 ≺µ x3. The requirement of majority rule then provides
that none can be selected among x1, x2 and x3. Therefore,
the set Mm(C) may be empty. This explains the well-
known Condorcet paradox of voting originally mentioned
in Condorcet (1785), which was later comprehensively ana-
lyzed by Kenneth Arrow based on the axiomatic approach
to the mechanism of collective decision-making in Arrow
(1963). Notice also that Pm(C) is always non-empty due
to the finite number of feasible solutions.
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