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a b s t r a c t

This paper shows the design and tests of an LPV power system stabilizer aimed at improving the damping of
electromechanical oscillations in power systems. In order to capture the dynamic model for control design,
LPV models were estimated from experimental data. The generator active and reactive powers were used as
scheduling parameters. The control problem is formulated as a parameterized linear matrix inequality, which
the positivity condition is relaxed through a sum-of-squares decomposition. The controller ensures stability and
𝐻∞ performance for a set of operating conditions. Field tests were carried out on a 10-kVA machine and on a
350-MVA hydroelectric generator.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Power system stabilizers (PSSs) are controllers used to improve
the damping of electromechanical oscillations in multimachine power
systems, ensuring reliability and efficiency in the operation of intercon-
nected systems. If these oscillations are not properly damped, the power
system operating condition may become unstable, leading to system
outages and safety concerns. In order to mitigate such lack of damping
for these oscillations modes, an auxiliary component of damping torque
is generated using PSS controllers. This stabilizing signal (PSS output)
modulates the automatic voltage regulator (AVR) reference (Kundur,
1994; Rogers, 2000). In IEEE/CIGRE Joint Task Force on Stability Terms
and Definitions (2004) this study area was defined as small-disturbance
(or small-signal) rotor angle stability.

Although power systems are highly nonlinear systems that operate in
a constantly changing environment, the standard PSS is designed using a
linearized model of the power system (Kundur, 1994). In this scenario,
the PSSs should preserve the small-signal system stability even under
these variations and disturbances. However, even if the system remains
stable, the damping level can be less than the adequate value.

The research topic on advanced control theory applied to power
system operation and performance improvement has been an active area
given the importance of such kind of plant. In light of these reasons,
over the last years robust (Konara & Annakkage, 2016; Martins & Bossa,
2014), self-tuning adaptive (Tavakoli & Seifi, 2016), LMI-based (Werner,
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Korba, & Yang, 2003), and gain-scheduling approaches (Nogueira et
al., 2014) have been proposed to design PSSs that are able to ensure
both stability and performance over a range of operating conditions.
Linear parameter varying (LPV) systems is a recent approach both to
deal with parametric uncertainty and to approximate nonlinear dynamic
systems (Sename, Gaspar, & Bokor, 2013). Explicit dependence on time-
varying exogenous parameters (scheduling parameters) is the main
characteristic of LPV systems.

The synthesis of LPV controller ensures the closed-loop system sta-
bility and performance for all trajectories of the scheduling parameters.
Real-time measurements of the scheduling parameters are used to adapt
them according to system variations. Furthermore, online convergence
is not necessary in LPV controllers, resulting in less computational effort
in executing the control law when compared with self-tuning regulators.
These reasons justify the fact that LPV control is currently referred
to as modern gain-scheduled control (Leith & Leithead, 2000; Rugh &
Shamma, 2000).

Taking into account that deviations from the nominal operating
condition of a power system can be represented in the form of struc-
tured uncertainty, an LPV model has the capability to approximate
the nonlinear dynamics for a given region of interest. Recent works
have applied the LPV theory to design controllers for power systems.
Schaab, Hahn, Wolkov, and Stursberg (2017) present simulation results
of an LPV controller applied to power systems containing synchronous
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generators as well as wind energy conversion systems. The design of a
decentralized LPV PSS and simulation tests on the 50-generator IEEE
test system are presented in Qiu, Vittal, and Khammash (2004). Using
the same benchmark simulation model, in Liu, Vittal, and Elia (2006) is
evaluated the performance of an LPV supplementary damping controller
implemented in a Thyristor Controlled Series Capacitor (TCSC). Regard-
ing to transitory stability, an LPV voltage regulator with rotor angle as
scheduling parameter is proposed in He, Liu, and Mei (2010). In this
paper, simulation tests were performed on a single-machine infinite-bus
power system.

Many papers published so far, on the subject of adaptive control and
its recent variants have been constrained only to carry out performance
evaluation by means of computational tests applied to simplified models
of the system. It is known that such computational models are obtained
by neglecting several important phenomena, implying a considerable
failure risk, when implemented in a real power system, due to the
fact that a generating unit is a critical equipment regarding to its
requirement for remaining in continuous operation and subjected to
very restrictive safety and regulation rules. Therefore, it is not so easy
to grant permission for performing field tests in such system.

In order to overcome these issues, laboratory scale electric power
systems can be used to validate advanced control methods on a real
environment. Following this, in Nogueira, Barra Jr., Da Costa Jr.,
Barreiros, and De Lana (2015) an LPV based PSS (LPV-PSS) was designed
and tested in a 10-kVA reduced-scale electric power system, which
is subjected to a wide range of operating conditions. Active power
deviation signal is processed to synthesize an appropriate control signal
providing additional damping torque to the system. Due to inherent
strong nonlinear dependence which exists between the relative damping
of the target oscillation mode and the power system loading condition,
the average value of the generated active power has been chosen as
the scheduling variable. The LPV-PSS was designed through a parame-
terized LMI (PLMI) formulation (Gilbert, Henrion, Bernussou, & Boyer,
2010), where a central polynomial is used to specify a target to the
closed-loop poles. A solution for the PLMI was obtained through a sum-
of-squares relaxation (Apkarian & Tuan, 2000; Scherer & Hol, 2006).

This work aims to extend the preliminary results shown in Nogueira
et al. (2015). Important topics as LPV model validation, choice for the
central polynomial, conditions for the sum-of-squares relaxation, and
LPV controller implementation, are addressed. In addition, field tests
carried out on a 350-MVA generating unit of the Tucuruí Hydroelectric
Power Plant, North Region of Brazil, are presented and discussed.

Therefore, the main paper’s novelty is to provide useful LPV-PSS
design techniques which assure both the performance and the stability
of power systems. Namely, the main contributions of the paper are: (i)
to address the difficult problem of designing an adaptive PSS in order to
provide enough damping for a set of allowed operating conditions; (ii)
to propose a design method which complies with standard safety and
operational rules stated for large power systems; (iii) to propose and
apply a LPV system identification strategy tailored for safe operation in
power plants; (iv) to adapt and apply, for that important engineering
problem, some recently proposed computation relaxation tools in order
to address the NP-hard problem of solving an infinite set of LMIs for
LPV-PSS design; (v) to implement and to assess performance of the
adaptive LPV-PSS in a large power plant, providing invaluable practical
information of interest of both engineers and researchers.

2. LPV system identification methodology

2.1. LPV-ARX model structure

The dynamic model used to capture the dominant modes of the plant
can be represented as a discrete-time LPV model given by:

𝐴 (𝑧,𝜽) 𝑦 (𝑘) = 𝐵 (𝑧,𝜽) 𝑢 (𝑘) + 𝑒 (𝑘) , (1)

where u(k) and y(k) are the system input and output, respectively, 𝑧−1 is
the backward-shift operator, 𝜽 =

[

𝜃1𝜃1 … 𝜃𝑝
]

is a vector with scheduling
parameters, and 𝑒 (𝑘) is the estimation error. The model can also be
presented in a transfer function form:

𝐺 (𝑧,𝜽) = 𝐵 (𝑧,𝜽) ∕𝐴 (𝑧,𝜽) . (2)

Note that the scheduling parameters are time-varying discrete signals
related to the system operating condition. For simplicity, the time index
k is omitted (𝜽 (𝑘) ∶= 𝜽). The parameterized polynomials 𝐵 (𝑧,𝜽) and
𝐴 (𝑧,𝜽) have the form:

𝐵 (𝑧,𝜽) = 𝑏1 (𝜽) 𝑧−1 + 𝑏2 (𝜽) 𝑧−2 +⋯ + 𝑏𝑛𝑏 (𝜽) 𝑧
−𝑛𝑏 , (3a)

𝐴 (𝑧,𝜽) = 1 + 𝑎1 (𝜽) 𝑧−1 +⋯ + 𝑎𝑛𝑎 (𝜽) 𝑧
−𝑛𝑎 , (3b)

where 𝑛𝑏 and 𝑛𝑎 are the degree of the parameterized polynomials. If the
vector 𝜽 has only one scheduling parameter, the terms 𝑏𝑖 (𝜽) and 𝑎𝑗 (𝜽)
can be fixed functions with polynomial dependence on 𝜃, such as:

𝑏𝑖 (𝜃) = 𝑏𝑖1 + 𝑏𝑖2𝜃 +⋯ + 𝑏𝑖𝑁𝜃𝑁−1, 𝑖 = 1,… , 𝑛𝑏, (4a)

𝑎𝑗 (𝜃) = 𝑎𝑗1 + 𝑎𝑗2𝜃 +⋯ + 𝑎𝑗𝑁𝜃𝑁−1, 𝑗 = 1,… , 𝑛𝑎. (4b)

Note that by selecting 𝑁 = 2, there is an affine dependence on 𝜃, and
for 𝑁 = 1, the resulting model is a conventional ARX (autoregressive
with exogenous input) model. For this reason, the model presented in
Eq. (1) is named LPV-ARX. When the scheduling vector 𝜽 is set by two
or more variables, 𝑏𝑖 (𝜽) and 𝑎𝑗 (𝜽) become multivariable polynomials.
This work evaluates LPV models with only one scheduling parameter.

Model (1) can be represented in a matrix regression form. Consider
a 𝚯 matrix with dimension n × N (𝑛 = 𝑛𝑏 + 𝑛𝑎), composed by the
parameters to be identified:

𝚯 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎11 ⋯ 𝑎1𝑁
⋮ ⋱ ⋮

𝑎𝑛𝑎1 ⋯ 𝑎𝑛𝑎𝑁
𝑏11 ⋯ 𝑏1𝑁
⋮ ⋱ ⋮

𝑏𝑛𝑏1 ⋯ 𝑏𝑛𝑏𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (5)

and the extended regression matrix 𝚿 composed by the plant collected
data:

𝚿 (𝑘) = 𝝓 (𝑘)𝝅 (𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑦 (𝑘 − 1)
⋮

−𝑦
(

𝑘 − 𝑛𝑎
)

𝑢 (𝑘 − 1)
⋮

𝑢
(

𝑘 − 𝑛𝑏
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

1 𝜃 𝜃2 … 𝜃𝑁−1] . (6)

From (5) and (6) the estimated output �̂� (𝑘) is calculated through (7):

�̂� (𝑘) =
⟨

�̂� (𝑘) ,𝚿 (𝑘)
⟩

, (7)

where �̂� is the matrix with estimated parameters, and ⟨A,B⟩ is the inner
product between matrices A and B, ⟨A,B⟩ = trace

(

A𝑇B
)

.

2.2. LPV least mean squares

The LPV identification method applied herein is based on the LPV
least mean squares (LPV-LMS) algorithm presented in Bamieh and
Giarré (2002), which highlights the formal persistence of excitation
as a necessary condition to acquire input–output data set with the
scheduling variable varying as much as possible between its limit values.
Therefore, during the data acquisition both system input and scheduling
variable should be excited. The literature of LPV identification often
considers this method as the global approach. However, systems with
slow dynamics scheduling variables often need a large data set to comply
with such requirement, although it leads to long term experiment, which
is not suitable for many practical applications in real systems. The LPV
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