
Control Engineering Practice 72 (2018) 206–218

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Closed-loop identification for plants under model predictive control
Ali Esmaili 1, Jianyi Li 2, Jinyu Xie 2, Joshua D. Isom *
Air Products and Chemicals, Inc., 7201 Hamilton Blvd, Allentown, PA 18195, United States

a r t i c l e i n f o

Keywords:
Model predictive control
System identification

a b s t r a c t

Model predictive controllers incorporate step response models for pairings of independent and dependent
variables. Motivated by the fact that it may be time-consuming to conduct open-loop experiments to identify the
step response models, the paper assesses the performance of closed-loop system identification on MPC-equipped
plants, using both simulated and actual plant data. Pure feedback closed-loop system identification is shown to be
effective for an identifiable simulated system and an industrial hydrogen production plant. The use of closed-loop
system identification as a mechanism for monitoring model quality in MPC implementations may enhance the
long-term sustainability of the implementation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is a technology that has found wide
acceptance in the petrochemical industry. MPC allows for improved
plant efficiencies, enhanced product quality, and increased robustness
to disturbances. Also, MPC allows for the satisfaction of known process
operating constraints. MPC can bring many benefits without degrading
the reliability of a process control system. In most implementations, the
MPC is only loosely coupled to the underlying distributed control system
(DCS), which means that the plant can run with or without the MPC
being active.

Most oil refineries use MPC. In some implementations, there is one
model predictive controller for each major unit operation. In other
implementations, a single model predictive controller provides high-
level set-points to the distributed control system for each unit operation.

MPC is also used at most industrial plants which produce hydrogen,
carbon monoxide, and syngas. Steam methane reformer units produce
a hydrogen-rich gas, known as reformate, from a hydrocarbon feed
stock. The reformate is then cooled, separated, and purified to produce
hydrogen, carbon monoxide, and syngas product streams. An MPC
at hydrogen production plant has on the order of one to two dozen
independent variables, and two to four dozen dependent variables. The
independent variables may include a set-point for the flow rate of the
hydrocarbon feed and a set-point for the flow of air to the reformer
burner. Dependent variables include the rate of hydrogen production,
the level of methane slip in the reformate, and the excess oxygen ratio
for the burner.
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MPC is widely used at Air Products (NYSE:APD), a leading industrial
gases company. For 75 years, the company has provided atmospheric,
process and specialty gases, and related equipment to manufacturing
markets including metals, food and beverage, refining and petrochem-
ical, and natural gas liquefaction. Air Products has over 50 years of
experience designing, building, and operating more than 100 hydrogen
facilities worldwide with hydrogen operations in 14 countries. Most of
the hydrogen plants owned and operated by Air Products incorporate
MPC. Also, the company provides a comprehensive range of services for
customers who own and operate their own hydrogen plants (Services-
and-Solutions, 2017).

In most implementations, model predictive controllers incorporate
step response models for the relationship between each pairing of an
independent and dependent variable. The step response models are used
to solve a finite horizon optimal control problem which is typically
formulated as a quadratic program with linear constraints.

To achieve the highest levels of performance with a model predictive
controller, the step response models for the relationship between inde-
pendent and dependent variables should be as accurate as possible. A
variety of approaches are used to develop the step-response models. In
some cases, simple first-principle models are used in conjunction with
engineering know-how to provide an initial guess for the models in the
absence of process data. A more sophisticated approach uses system
identification techniques with actual plant operating data to produce
the step-response model.
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Ideally, the step-response models should capture the true open-loop
relationship between the independent and dependent variable. To make
this more effective the ideal perturbations to the inputs should have the
form of a pseudo random binary sequence (PRBS) (Koung & Macgregor,
1994) or constrained multisine input (Rivera et al., 2009). In practice, it
may be costly and time-consuming to conduct open-loop experiments in
a large petrochemical plant. It is also possible that the system is unstable
under open-loop, in such case it would not be viable to perform an open-
loop test. Thus, it may be necessary to perform system identification
using closed-loop data produced with the distributed control system
and/or the model predictive controller engaged.

The theory and technology for open-loop identification using delib-
erate system excitation is mature. Commercial MPC packages, including
Aspen DMC and Invensys Connoisseur, incorporate methods for identi-
fication using the results of step tests. And while the theory of pure
feedback closed-loop identification is mature, application of closed-loop
identification in MPC implementations is rare.

There is important recent work on performing system identification
on a closed-loop system under MPC by using additive external exci-
tation. In one approach, a design-of-experiments approach is used to
find the external excitation which will produce identifiability (Ebadat,
Valenzuela, Rojas, & Wahlberg, 2017). In another approach, the MPC
is designed specifically to ensure that an excitation signal will produce
identifiability (González et al., 2014). Though these technologies are
promising, they are likely years away from wide-spread adoption in
industry. In the meantime, it is appropriate to assess the performance
and potential applications of pure-feedback closed-loop system identifi-
cation for systems under MPC.

An important motivation for performing pure-feedback closed-loop
system identification is as a means for monitoring and maintaining the
MPC implementation. As noted in a recent book, many MPC imple-
mentations fail due to gradual deterioration of MPC performance post-
implementation (Lahiri, 2017). One major reason for the performance
deterioration is degraded model quality (Lahiri, 2017; Yan, Harinath,
& Dumont, 2009). In this paper, it is shown that closed-loop system
identification may be used to monitor the quality of the MPC step-
response models and triggering model updates when appropriate. Thus
pure-feedback closed-loop system identification can be used, potentially
in conjunction with other approaches for control performance monitor-
ing (Mesbah, Bombois, Forgione, Hjalmarsson, & Hof, 2015), to enhance
the sustainability of an MPC implementation.

Section 2 of this paper is a review of various closed-loop system iden-
tification approaches, which have been very well studied over the years
by the academics and even applied in practice. Section 3 provides the
results of simulation studies which were used to benchmark closed-loop
system identification methods, as well as the results of pure-feedback
closed-loop system identification when applied to data from a large-
scale hydrogen production plant. Section 3.3 looks at the application of
this system in a real-time practical setting to illustrate the value that
could be gained from effective implementation of these approaches.
Section 4 is a conclusion, with emphasis on recommendations and
guidelines for future practitioners in this area.

2. Theory

Section 2.1 summarizes methods for identifying models using data
from closed-loop experiments. Section 2.2 summarizes key results on
the identifiability of closed-loop systems.

2.1. Closed-loop system identification approaches

As summarized in Esmaili, MacGregor, and Taylor (2000) and Huang
and Shah (1997) most methods for identifying models using data from
closed-loop experiments are variants of the following three approaches:

◦ (i) direct identification using prediction error methods to directly
fit input/output models to the closed-loop data,

◦ (ii) indirect identification where a model is built between the
output and the external variable exciting the process, and then
the process model is calculated using prior knowledge of the
controller equation,

◦ (iii) joint input/output identification where both the input and
output variables are modeled as a function of the external
exciting variable and the disturbance innovations, and then the
process and disturbance models are extracted.

Details on all these approaches are given in Forssell and Ljung
(1999), Lakshminarayanan et al. (2001) and Söderström and Stoica
(1988). A series of two-step identification procedures was proposed as
a variant of the joint identification approach (Huang & Shah, 1997;
Van Den Hof & Schrama, 1993). In these approaches, the joint in-
put/output identification problem is broken into two open-loop identi-
fication problems, the first problem is to fit a model to the input to yield
an estimate of the closed-loop sensitivity function, and then, using this
estimate to filter the input or output, the second problem is to identify
the process model from the filtered data. By breaking up the identifica-
tion problem into two open-loop problems, the two-step methods have
suggested to be asymptotically unbiased. Direct identification, which is
the more classical approach, gives asymptotically unbiased results, if
adequate disturbance and transfer function model structures are used,
and identified simultaneously (Gustavsson, Ljung, & Söderström, 1977;
MacGregor & Fogal, 1995). Another motivation that is claimed for
the two-step approach is that a disturbance model is not needed. This
follows from Ljung (1999) which proved that open-loop identification
will give an asymptotically unbiased estimate of the process model even
if the disturbance model is inadequate, if the disturbance is stationary.
However, with finite data sets and for disturbances that approach non-
stationarity, the two-step approach can produce biased results, and
provide estimates with larger variance.

The main distinction between the direct and two-step methods is
how they diminish the effect of the feedback correlation in the closed-
loop data. Both methods achieve this by filtering the data. In the direct
method, both the input and output data are filtered with the inverse
of the estimated disturbance model. In the two-step method, either the
input data or the output data is filtered with the estimated closed-loop
sensitivity function. Both the direct and two-step methods can be used
to provide asymptotically unbiased results with parsimonious or non-
parsimonious model structures, if the model structures contain the true
process model and either the true disturbance model (direct method)
or the true sensitivity function model (two-step method). Using the
non-parsimonious model structure makes both methods easier to use
in practice, at the expense of increasing the variance of the parameter
estimates.

2.2. Identifiability

In the literature on system identification, a feedback system (as illus-
trated in Fig. 1) is deemed to be Closed-Loop Identifiable if the estimated
parameters converge to their ‘‘true’’ values ‘‘in some stochastic sense’’
as the number of observation approaches infinity (Gustavsson et al.
1977). Typically, closed loop identification problems are significantly
more complex than the open loop ones, since the system becomes less
sensitive and requires more significant perturbations. There are several
aspects that may affect the identifiability of a closed-loop system, such
as the true model structure and model parameterization, and design
of experiments. A practical manner to guarantee identifiability is to
increase the number of controllers 𝑟 (Gustavsson et al. 1977). To
guarantee Strong System Identifiability (SSI) for a linear system with
one or more linear controllers, the condition

𝑟 ≥
𝑛𝑦 + 𝑛𝑢
𝑛𝑦 + 𝑛𝑣

(1)

should be satisfied, where 𝑟 is the number of linear controllers, and
𝑛𝑦, 𝑛𝑢 and 𝑛𝑣 denotes the number of output, input and extra external
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