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a b s t r a c t

The vehicle sideslip angle is one of the most functional feedbacks for the actual control systems of vehicle
dynamics. The measurement of the sideslip angle is expensive and unsuitable for common vehicles. Consequently,
its estimation is nowadays an important task.

This paper focuses on the vehicle sideslip angle estimation adopting a constrained unscented Kalman filter
(CUKF) that takes into account state constrains during the estimation process. State boundaries are useful in
real-world applications to prevent unphysical results and to improve the estimator robustness. The proposed
technique fully takes into account the measurement noise and nonlinearities. A vehicle model with single track
has been adopted for the design of the estimator. Simulations have been carried out and comparisons with the
unscented Kalman filter (UKF) are illustrated. Performance of the estimators have been checked through the
application to experimental data. The results show the goodness of the CUKF, able to give an estimate fully
in accordance with the measurement. Moreover, the results show that the CUKF, due to the presence of the
boundaries, outperforms the UKF.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years considerable interest has been focusing on the estima-
tion of the vehicle sideslip angle. Indeed, the directional behaviour and
stability of the vehicle are strongly related to the sideslip angle, that is
often requested in vehicle dynamics control systems (Melzi & Sabbioni,
2011; Rajamani, 2005; Russo, Strano, & Terzo, 2015; van Zanten, 2000;
van Zanten, Erhardt, & Pfaff, 1996; Villagra, d’Andréa Novel, Fliess, &
Mounier, 2011).

Generally, expensive instrumentation are adopted for measuring the
vehicle sideslip angle. As a consequence, several methodologies for
vehicle sideslip angle estimation have been proposed in literature. A
sideslip angle estimation method based on a layered neural network has
been proposed in Sasaki and Nishimaki (2000). In Solmaz and Baslamisli
(2012) and Grip et al. (2008), nonlinear observers are developed in
order to work for different adhesion characteristics. A particle filter
technique is described in Cheng, Correa, and Charara (2011) where the
relation between the tyre road forces and the sideslip angle has been
described with a Dugoff model.

The extended Kalman filter (EKF) approach has been extensively
adopted for state estimation in vehicle dynamics (Chen & Hsieh, 2001;
Kim, 2009). This method could be applied to nonlinear systems by
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performing a local linearization. However, inevitably estimation errors
occur due to the linearization of the vehicle mathematical model. In
order to overcome this limit, a family of sigma-point Kalman filters has
been recently proposed (Mariani & Ghisi, 2007; van der Merwe & Wan,
2003). These filters generate a population of so-called sigma-points
on the basis of the current mean and covariance of the state vector,
and allow them to propagate according to the actual nonlinear system
dynamics. The unscented Kalman filter (UKF) (Julier & Uhlmann,
1996; Julier, Uhlmann, & Durrant-Whyte, 2000) belongs to this class
of nonlinear filters, and one of the main advantages over the EKF is that
the UKF does not require linearization phases and gradient computation
of the state evolution equations. In Antonov, Fehn, and Kugi (2011) and
Doumiati, Victorino, Charara, and Lechner (2009) , the UKF has been
adopted for vehicle state estimation and the results have shown that the
UKF outperforms the EKF, allowing the employment of larger sampling
time.

Despite the fact that the UKF outperforms the EKF, some deficiencies
still remain. One of the most important deficiencies of the UKF is that
constraints on state variables cannot be taken into account and conse-
quently the filter could fail in cases of inaccurate system modelling.
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Many approaches have been developed for UKF with constrained
problems, also called constrained UKF (CUKF) (Kandepu, Foss, & Ims-
land, 2008; Kolas, Foss, & Schei, 2009; Mandela, Kuppuraj, Rengaswmy,
& Narasimhan, 2012; Vachhani, Narasimhan, & Rengaswamy, 2006; Wu
& Wang, 2014).

In this paper, a CUKF for vehicle sideslip angle estimation is pre-
sented, avoiding a local linearization of the vehicle mathematical model
and taking into account the state boundaries.

Within this context, the interaction forces have been considered as
states by using a random walk model approach. In this way, no reference
model has to be employed to take into account tyre behaviour and,
consequently, no tuning procedure is necessary for the tyres that are
adopted on the vehicle. For comparison purpose, the UKF has been
chosen as benchmark due to its demonstrated suitability in vehicle dy-
namics (Antonov et al., 2011). The results demonstrate the effectiveness
of the CUKF for the estimate of the vehicle sideslip angle, due to the
presence of the boundaries on the state variables that allow a better
performance in terms of convergence and estimation error (Kandepu et
al., 2008; Mandela et al., 2012).

The paper is organized as follows: Sections 2 and 3 focus on the UKF
and the CUKF, respectively; the vehicle model is presented in Section
4; while Sections 5 and 6 illustrate simulation and experimental results,
respectively.

2. Unscented Kalman filter

The UKF has been proposed by Julier, Uhlrnann, and Durrant-Whyte
(1995) and further improved Julier (2002). Since UKF does not require
evaluating Jacobian and Hessian matrices, and has superior accuracy
compared to EKF in terms of approximating the statistics of highly
nonlinear systems, it is suitable for estimating fairly complex dynamical
systems.

The statistical properties of a random variable in the unscented
transformation are described with sigma points. As a consequence, the
statistical behaviour of the transformed random variable is obtained
by applying the nonlinear transformation to the sigma points. The
UKF algorithm is briefly described in the following, since it has been
employed for a comparative analysis. Consider the following continuous
nonlinear state space description with discrete measurements sampled
at regular intervals with sampling period 𝛥𝑡

𝐱𝑘+1 = 𝐱𝑘 + ∫

(𝑘+1)𝛥𝑡

𝑘𝛥𝑡
𝐟
[

𝐱(𝜏),𝐮𝑘
]

𝑑𝜏 + 𝐰𝑘 𝐱𝑘 ≡ 𝐱(𝑘𝛥𝑡)

𝐲𝑘+1 = 𝐡(𝐱𝑘+1,𝐮𝑘+1) + 𝐯𝑘+1

(1)

where 𝐱 ∈ 𝐑𝑛 is the n-dimensional vector of system state, 𝐟 and 𝐡
are nonlinear functions, 𝐮 is the input vector, 𝐰 is the process noise
characterized by the covariance 𝐐, 𝐲 ∈ 𝐑𝑚 is the m-dimensional
vector of measurement, 𝐯 is the Gaussian white measurement noise with
covariance 𝐑 and k is the kth time step. The main task is to estimate the
system state, i.e., calculate the mean as well as the covariance of system
state at the (k +1)th step, based on the state estimation at the kth step
and the measurements at the current (k +1)th step.

Given the filtered state estimates �̂�𝑘|𝑘, which have been obtained
using all the measurements made up to time 𝑡𝑘, and the input 𝐮𝑘, the
predicted state estimates �̂�𝑘+1|𝑘 can be obtained as

�̂�𝑘+1|𝑘 = �̂�𝑘 | 𝑘 + ∫

(𝑘+1)𝛥𝑡

𝑘𝛥𝑡
𝐟
[

𝐱(𝜏),𝐮𝑘
]

𝑑𝜏; �̂�𝑘 | 𝑘 ≡ �̂�(𝑘𝛥𝑡) (2)

A set of 2𝑛 + 1 sigma points 𝐗𝑘 | 𝑘,𝑖 with associated weights 𝐖𝑖 are
chosen symmetrically about �̂�𝑘|𝑘 as follows:

𝐗𝑘 | 𝑘,0 = �̂�𝑘 | 𝑘, 𝐖0 =
𝜅

𝑛 + 𝜅

𝐗𝑘 | 𝑘,𝑖 = �̂�𝑘 | 𝑘 +
(√

(𝑛 + 𝜅)𝐏𝑘 | 𝑘

)

𝑖
, 𝐖𝑖 =

1
2(𝑛 + 𝜅)

and

𝐗𝑘 | 𝑘,𝑖+𝑛 = �̂�𝑘 | 𝑘 −
(√

(𝑛 + 𝜅)𝐏𝑘 | 𝑘

)

𝑖
, 𝐖𝑖+𝑛 =

1
2(𝑛 + 𝜅)

(3)

where
(√

𝐏𝑘 | 𝑘
)

𝑖 is the ith column of the matrix square root of the
error covariance matrix 𝐏𝑘 | 𝑘, 𝐖𝑖 is the weight associated with the
corresponding point and 𝜅 is a tuning parameter.

The set 𝐗 and �̂�𝑘 | 𝑘 have the same weighted mean due the symmetric
placement of the sigma points and since the weights 𝐖𝑖 sum is one.
Therefore, the weighted covariance matrix of the sample 𝐗 is equal to
𝐏𝑘 | 𝑘:

𝐏𝑘| 𝑘 =
2𝑛
∑

𝑖=0
𝐖𝑘,𝑖(𝐗𝑘| 𝑘,𝑖 − �̂�𝑘| 𝑘)(𝐗𝑘| 𝑘,𝑖 − �̂�𝑘| 𝑘)T (4)

The predicted set of sigma points are obtained by applying the
nonlinear state space equation to the sigma points:

𝐗𝑘+1|𝑘,𝑖 = �̂�𝑘 | 𝑘,𝑖 + ∫

(𝑘+1)𝛥𝑡

𝑘𝛥𝑡
𝐟
[

𝐗𝑖(𝜏),𝐮𝑘
]

𝑑𝜏; 𝐗𝑘 | 𝑘,𝑖 ≡ 𝐗𝑖(𝑘𝛥𝑡), (5)

and the predicted state estimate and the error covariance matrix are

�̂�𝑘+1 | 𝑘 =
2𝑛
∑

𝑖=0
𝐖𝑘,𝑖𝐗𝑘+1 | 𝑘,𝑖

𝐏𝑘+1 | 𝑘 =
2𝑛
∑

𝑖=0
𝐖𝑘,𝑖(𝐗𝑘+1 | 𝑘,𝑖 − �̂�𝑘+1 | 𝑘)(𝐗𝑘+1 | 𝑘,𝑖 − �̂�𝑘+1 | 𝑘)T +𝐐𝑘.

(6)

Propagation of the sigma points through the nonlinear measurement
equation provides the predicted measurements:

𝚼𝑘+1 | 𝑘,𝑖 = 𝐡(𝐗𝑘+1 | 𝑘,𝑖,𝐮𝑘+1), 𝑖 = 0, 1 , … , 2𝑛, (7)

and the covariance matrix of innovations and the cross covariance
matrix between predicted state estimate errors and innovations are
computed as

𝐏𝑦𝑦,𝑘+1 | 𝑘 =
2𝑛
∑

𝑖=0
𝐖𝑘,𝑖(𝜰 𝑘+1 | 𝑘,𝑖 − �̂�𝑘+1 | 𝑘)(𝜰 𝑘+1 | 𝑘,𝑖 − �̂�𝑘+1 | 𝑘)T + 𝐑𝑘+1

𝐏𝑥𝑦,𝑘+1 | 𝑘 =
2𝑛
∑

𝑖=0
𝐖𝑘,𝑖(𝐗𝑘+1 | 𝑘,𝑖 − �̂�𝑘+1 | 𝑘)(𝜰 𝑘+1 | 𝑘,𝑖 − �̂�𝑘+1 | 𝑘)T

(8)

where

�̂�𝑘+1 | 𝑘 =
2𝑛
∑

𝑖=0
𝐖𝑘,𝑖𝜰 𝑘+1 | 𝑘,𝑖. (9)

Finally, the updated state estimates and the error covariance matrix
of updated state estimates are

�̂�𝑘+1 | 𝑘+1 = �̂�𝑘+1 | 𝑘 +𝐊𝑘+1(𝐲𝑘+1 − �̂�𝑘+1 | 𝑘) (10)
𝐏𝑘+1 | 𝑘+1 = 𝐏𝑘+1 | 𝑘 −𝐊𝑘+1𝐏𝑦𝑦,𝑘+1 | 𝑘𝐊T

𝑘+1 (11)

where

𝐊𝑘+1 = 𝐏𝑥𝑦,𝑘+1 | 𝑘(𝐏𝑦𝑦,𝑘+1 | 𝑘)−1 (12)

is the Kalman gain matrix.

3. Constrained unscented Kalman filter

An improved version of the UKF is the CUKF, introduced in Section
1, that can take into account constraints of the state variables.

The CUKF approach considered in this paper consists of two main
aspects (Wu & Wang, 2014): in the prediction step, sigma points
that violate bound constraints are moved onto the bounds, and the
relevant sigma points within the boundary are moved correspondingly
in order to obtain the symmetry of the new set of sigma points; (ii)
in correction step, the state updating equation is used to generate
transformed sigma points, and those transformed sigma points that
violate bound constraints are projected to constraints boundary only
when the updated state estimate exceeds the boundary (Wu & Wang,
2014). The details of above proposals are described as follows.
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