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a b s t r a c t

This paper describes a novel formalism for modelling uncertain system parameters and measurements, as interval
models in a Bond Graph (BG) modelling framework. The main scientific interest remains in integrating the
benefits of BG modelling technique and properties of Interval Analysis (IA), for efficient diagnosis of uncertain
systems. Structural properties of Bond graphs in Linear Fractional transformation (BG-LFT) are exploited to model
interval-valued uncertainties over a BG model in order to form an uncertain BG. The inherent causal properties
are exploited to generate interval-valued fault indicators. Then, various properties of IA are used to generate point
valued residual and interval-valued thresholds. The latter must contain the point valued residuals under nominal
system functioning. A systematic procedure is proposed for passive-type fault detection method which is robust
to uncertain system parameters and measurements. The viability of the method is shown through experimental
study of a steam generator system. The limitations associated with existing fault detection method based on
BG-LFT are alleviated by the proposed approach. Moreover, it is shown that proposed approach generalizes the
BG-LFT method. This work forms the initial step towards integrating interval analysis based capabilities in BG
framework for fault detection and health monitoring of uncertain systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced methods of supervision, fault detection and fault diag-
nostics become increasingly significant for improving the reliability,
safety and efficiency of technical processes in various domains of
engineering (Chen & Patton, 2012; Gertler, 1997; Isermann, 2005;
Samantaray & Bouamama, 2008). The past decade has seen tremendous
usage of Analytical Redundancy Relations (ARRs) for the purpose of
fault detection (FD) and isolation (FDI) (Ould Bouamama, Medjaher,
Bayart, Samantaray, & Conrard, 2005; Staroswiecki & Comtet-Varga,
2001). ARRs represent the physical constraints laws derived from the
mathematical model of the system. They have the form∶ 𝒉(𝒌) = 0
for any function 𝒉 and set of known variables 𝒌. ARRs are usually
sensitive to known system parameters (like resistor in an electrical
circuit) and measurements (sensor data, control inputs etc.). Residuals
are the numerical evaluation of ARRs. Ideally, residuals remain within
a certain bound of error when evaluated using measured data from the
real system (Chen & Patton, 2012).

Recently, the Bond Graph (BG) modelling technique has been used
extensively for ARR based supervision (Karnopp, Margolis, & Rosenberg,
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2012; Rosenberg & Karnopp, 1972). BG has been established as an effi-
cient modelling tool due to its well-developed graphical, structural and
causal properties. A concise discussion on BG technique is provided in
Appendix A. For a detailed introduction from ab-initio (causal and struc-
tural properties), readers are referred to Borutzky (2011), Karnopp et al.
(2012), Mukherjee and Samantaray (2006) and Thoma and Bouamama
(2000). Traditionally, BG models in preferred integral causality have
been used for simulations/analysis and preferred derivative causality has
been exploited for development of FD theory and supervision. Derivative
causality leads to alleviation of initial condition problems. BG enabled
FD for deterministic systems and notion of monitorability, isolability,
fault signature matrix, ARR generation algorithms etc. are well detailed
in Medjaher, Samantaray, Ould Bouamama, and Staroswiecki (2006)
and Ould Bouamama, Medjaher, Samantaray, and Staroswiecki (2006).
Some of the major FD related works include supervision of thermo-
chemical systems (Bouamama, Samantaray, Medjaher, Staroswiecki,
& Dauphin-Tanguy, 2005; Bouamama, Staroswiecki, Riera, & Cherifi,
2000; Medjaher et al., 2006), industrial chemical reactors (El Harabi,
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Nomenclature

Abbreviations
ARR Analytical Redundancy Relations
BG Bond Graph
BG-LFT Bond Graph in Linear Fractional Transformation
FDI Fault Detection and Isolation
FD Fault Detection
IA Interval Analysis
I-ARR Interval-valued Analytical Redundancy Relations
IEF Interval Extension Functions
N-IEF Natural Interval Extension Function
RIF Rational Interval Function
URIF uncertain residual interval function

Notations
𝜃 System parameter
𝜃𝑑 System parameter under degradation (prognostic can-

didate)
𝜃𝑛 Nominal value of 𝜃𝑑
𝛥𝜃 Additive uncertainty on 𝜃
𝛿𝜃 Multiplicative uncertainty on 𝜃
[𝛿𝜃] Multiplicative uncertainty in interval form, equivalent

to [𝛿𝜃 , 𝛿𝜃]
[𝑤𝜃] Uncertain effort or flow brought by interval uncer-

tainty on 𝜃, to the system.
𝑆𝑆𝑒 (𝑆𝑆𝑓 ) Dualized source of effort (flow)
[−𝛥𝑆𝑆𝑒𝑙 , 𝛥𝑆𝑆𝑒𝑢] Interval valued Uncertainty on 𝑆𝑆𝑒
[𝑅,𝑅] Interval valued ARR (I-ARR)
𝑅𝑛(𝑡) Nominal part of the I-ARR [𝑅,𝑅]
𝑟𝑛(𝑡) Numerical evaluation of the nominal part 𝑅𝑛(𝑡) of I-

ARR
𝛹 Function with point-valued nominal parameters as

arguments
𝜳 URIF or Interval function of 𝛹 with interval valued

arguments
[𝐵(𝑡), 𝐵(𝑡)] Range or interval evaluation of URIF 𝜳
𝑀𝑆𝑒∗ Virtual source of effort
[𝜁𝑆𝑆𝑒] Notation denoting [−𝛥𝑆𝑆𝑒𝑙 , 𝛥𝑆𝑆𝑒𝑢]

Ould-Bouamama, Gayed, & Abdelkrim, 2010) etc. A comprehensive
review of BG based supervision is provided in Bouamama, Biswas,
Loureiro, and Merzouki (2014) and Ould-Bouamama, El Harabi, Ab-
delkrim, and Ben Gayed (2012).

The last decade has witnessed a successful transition of BG based FD
from deterministic domain to uncertain systems. This has been possible
mainly due to emergence of BG in Linear Fractional Transformation
(BG-LFT), for uncertain systems (Dauphin-Tanguy and Kam, 1999).
BG-LFT methodology is well detailed in Sié Kam and Dauphin-Tanguy
(2005). BG-LFT models represent parametric uncertainties in such a
way that causal, structural and behavioural properties of BG theory
remain applicable for successful FD. Robust FDI is achieved through
generation of adaptive thresholds (passive type of diagnosis) which are
robust to parametric uncertainties (Djeziri, Merzouki, Bouamama, and
Dauphin-Tanguy, 2007). In Djeziri, Ould Bouamama, and Merzouki
(2009b), BG-LFT model of an uncertain steam generator is used for
robust FDI, (Djeziri, Merzouki, & Bouamama, 2009a) describes the
robust monitoring of electric vehicle, (Niu, Zhao, Defoort, & Pecht,
2014) employs BG-LFT and auto-regressive kernel regression based
threshold monitoring, (Benmoussa, Bouamama, & Merzouki, 2014;
Loureiro, Benmoussa, Touati, Merzouki, & Ould Bouamama, 2014) deal
with BG-LFT enabled robust FDI of intelligent vehicles and autonomous
systems, (Touati, Merzouki, & Ould Bouamama, 2012) extends the

methodology by including measurement uncertainties on BG-LFT. In this
context, it is noteworthy to highlight that uncertain parameters may be
broadly classified into two categories: (i) uncertain physical components
(electrical resistances, capacitors, etc.) where uncertainty manifests in
terms of manufacturing errors or tolerance-of-manufacturing (percent-
age errors) on either side of the fabricated value (nominal value), (ii)
uncertain physical phenomena that deviate or exhibit natural varia-
tions based upon different operational conditions (friction coefficient,
temperature dependent electrical resistivity etc.) and usually vary uni-
directionally. Presence of uncertainties lead to the requirement of
robustness. In the context of supervision, robust FD methods imply
preferable sensitivity to faults/fault indicators and robustness against
uncertainties, environmental noises etc.

In this context, although BG-LFT has been exploited for mitigation of
uncertainty related issues, little efforts have been made to ameliorate the
methodology itself. For instance, therein, parametric uncertainties are
quantified in a statistical manner and uncertain parameters are modelled
with equal magnitudes of additive (or multiplicative) uncertainties
on either sides of its respective nominal value. As BG-LFT method is
envisaged as a unified modelling language for various energetic systems,
the existing method limits its scope in incorporating all types of uncer-
tain components, viz., physical components and physical phenomena.
Furthermore, it is noteworthy that efficiency of any passive type of FD
significantly depends upon the sensitivity of the thresholds generated
for detection of faults.

On the other hand, bounding approaches employ interval models
to model the uncertain system variables and parameters etc., enabling
variation of the interval variable within pre-defined numeric inter-
vals (Moore, 1979). Interval Analysis (IA) deals with computations
involving intervals defined as set of real numbers {𝑥|𝑥 ≤ 𝑥 ≤ 𝑥} denoted
as 𝑋 =

[

𝑥, 𝑥
]

, where 𝑥 is the infimum and 𝑥 is the supremum. The set
of closed intervals is 𝐼 (ℜ) = {[𝑎, 𝑏] |𝑎, 𝑏 ∈ ℜ, 𝑎 ≤ 𝑏}. Being extension to
real numbers; a real number 𝑥 can be treated as a degenerate interval
[

𝑥, 𝑥
]

. Interval arithmetic generalizes real arithmetic. Appendix B lists
important properties and definitions related to IA. Readers are referred
to Moore (1979) and Moore, Kearfott, and Cloud (2009) for details
of IA. Moreover, classical interval-arithmetic based FDI can be referred
in Karim, Jauberthie, and Combacau (2008), Rinner and Weiss (2004).

Recently, Jha, Dauphin-Tanguy, and Ould Bouamama (2014b) pro-
posed a strategy involving BG-LFT and IA, wherein the thresholds
were generated by treating the uncertain part of BG-LFT derived ARR,
as an interval extension function (IEF). In Jha, Dauphin-Tanguy, and
Ould Bouamama (2014a), the latter was integrated in a health mon-
itoring framework as a diagnostic module. However, these previous
attempts did not discuss the interval propagation strategy and sought
the description of a formalism that models various types of uncertainties
(parametric and measurement) using BGs. Furthermore, in these works
the method was neither applied in real time nor compared with existing
methods.

This paper describes a novel formalism of modelling the uncer-
tain system parameters and measurements, in interval form under
BG framework. The main scientific interest remains in integrating
the benefits of BG technique with IA properties leading to efficient
diagnosis of uncertain systems. A systematic procedure is proposed
for passive type fault detection, robust to uncertain system parameters
and measurements. The proposed method alleviates several limitation
associated with BG-LFT based FDI. Moreover, I-ARR generalizes the BG-
LFT method technique through usage of interval models.

The paper is divided into 6 sections. After the introduction section,
Section 2 introduces interval modelling technique in BG framework.
Section 3 establishes the procedure to generate interval-valued fault
indicators termed as Interval-Valued analytical redundancy relations
(I-ARR). Further, properties of IA are used to generate point valued
residual and interval-valued thresholds over the latter.

I-ARRs and discusses various aspects related to interval calculations
and implementation. Section 4 presents the implementation of method
on steam generator system. Section 5 presents a comparative study
between the I-ARR method and the BG-LFT method. Section 6 draws
conclusions.
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