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a b s t r a c t

We address an optimal experimental design (OED) procedure for the online selection of type-1-diabetes (T1D)
mellitus glucose metabolistic models. A fully observable reduced-order nonlinear dynamic model is presented and
subsequently parameterised for Göttingen Minipigs and patients, that were both subject to an automatic insulin
delivery. A bank of continuous–discrete unscented Kalman filters (CDUKF) is designed and parameterised for
Göttingen Minipigs and patients. Based on this filter bank of CDUKF, a novel online OED design procedure is
developed, that is used to identify the correct parameter set out of several available sets for measured blood
glucose concentrations. The procedure utilises forward model simulations to calculate optimal system inputs.
This leads to the identification of the correct parameter set under arbitrary conditions. Results are presented for
both subgroups.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The regulation of blood glucose (BG) concentration is an critical
control loop of the human body. In the case of diabetes mellitus, the
body internal regulation of BG concentration is not functioning properly
anymore leading to an often increased blood glucose concentration
(hyperglycaemia). Diabetes mellitus is characterised by high BG levels
beyond 126 mg/dl (7 mmol/l) in fasting state or beyond 200 mg/dl
(11.1 mmol/l) in oral glucose tolerance test by increased HbA1c fraction
(> 6.5 %). Diabetes mellitus is a metabolic disease with a worldwide
increasing prevalence; global estimates predict a number of 592 million
people with diabetes mellitus by the year 2035, while 382 million people
were accounted with diabetes mellitus in 2013 (International Diabetes
Federation (IDF), Shaw, Sicree, & Zimmet, 2010).

In this contribution we concentrate on type-1-diabetes mellitus
(T1D), which makes up for about 10% of all diabetes mellitus pa-
tients. T1D is characterised by a deficiency of insulin producing 𝛽-
cells and associated with hyperglycaemia that may, in turn, lead to
severe secondary complications, if not properly treated (Libby, et al.,
2005). Manual insulin therapy is currently conducted by T1D patients
and consists of (1) glucose concentration measurements and (2) the
computation of suitable insulin dose, that is (3) subcutaneously injected
by the patient. The manual therapy is suboptimal for a number of
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reasons: Manual insulin therapy typically consists of a number of time-
discrete and occasional measurements (3–5 measurements/day), such
that a sufficiently fast reaction to changes in BG concentration cannot
be guaranteed in general. As a result, episodes of hyper- or hypogly-
caemia occur relatively often in manual insulin therapy. Moreover,
uncertainties associated with subcutaneous insulin application (Binder,
Lauritzen, Faber, & Pramming, 1984) and time-varying parameters of
the metabolic system (Hirsch, Farkas-Hirsch, & Skyler, 1990) make the
manual therapy difficult even for experienced adult patients. Although
continuous glucose monitors (CGM), continuous subcutaneous insulin
infusion (CSII), and sensor-augmented pumps (SAP) have been intro-
duced in recent years, the use requires significant patient input and the
compliance of the patients (Giani, Scaramuzza, & Zuccotti, 2015).

The artifical pancreas (AP) has been proposed in the former century
and has been well researched over the last decades (Chee & Fernando,
2007; Lunze, Singh, Walter, Brendel, & Leonhardt, 2013; Parker, Doyle,
Ward, & Peppas, 2000). Three main components are needed for a realisa-
tion of the AP: (I) a feedback controller, (II) measured BG concentration
or CGM values, and (III) insulin pump infusion rates. Although there
exist first studies of an AP validated in clinical closed-loop studies
(for example Dassau, et al., 2013) and an FDA approved device that
can automatically adjust an insulin basal rate (670G, Medtronic plc,
Dublin Ireland) there is still no fully automated AP available as a
product. The main reasons for this are twofold: There exist technical
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difficulties associated with minimising overall process time-delay by the
use of continuously measuring blood glucose sensors and fail-safe insulin
infusion pumps (Heinemann, Benesch, DeVries, et al., 2011). Moreover,
the glucose metabolism is an uncertain, nonlinear dynamic system,
undergoing exogenous disturbances, like meal uptake or activity. Un-
certainties in the glucose metabolism consist, for example, of time-
varying insulin sensitivity (the insulin sensitivity 𝑘𝐼𝑆 (𝑡) is a time-varying
parameter that describes the amount of glucose that is transported from
the blood to the muscle cells at a constant insulin concentration in
blood) and intra-individual and inter-individual parameter uncertainty.
From the literature (Skogestad & Postlethwaite, 2007), it is well known
that the incorporation of, for example, large parametric uncertainty
into a robust controller design procedure might lead to controller
over-conservatism. However, controller over-conservatism with respect
to robust performance is not acceptable, as it tends to lead to large
overshoots (hyperglycaemia) in disturbance rejection. To alleviate the
disadvantages associated with controller over-conservatism, adaptive or
model-based controller design techniques can be employed (Misgeld,
Tenbrock, Lunze, & Leonhardt, 2016b). Towards this end, we present a
new method for the online selection of glucose metabolism models.

An optimal experimental design (OED) might have different goals,
such as the optimal identification of parameters or the discrimination
of a mathematical model that best fits with experimentally measured
data. Here, we will concentrate on the latter approach, of which one can
think as to derive a mathematical model 𝑆 for each of the 𝑅 hypothe-
sis: 𝑆1, 𝑆1,… , 𝑆𝑅 (Burnham, Anderson, & Huyvaert, 2011). A general
overview on OED is given by Franceschini and Macchietto (2008)
and Pronzato (2008). The idea of competing hypotheses of possibly
structurally different models can be found in many application areas,
for example, systems biology (Schenkendorf, Kremling, & Mangold,
2009). Various methods are available in the literature, which are based
on statistics/information theory. These methods typically rely on batch
processing of measurements data 𝒚(𝑡𝑘), where 𝑡𝑘 denotes discrete time.
Moreover, uncertainties are often not explicitly considered (Kremling et
al., 2004; Ludden, Beal, & Sheiner, 1994). To overcome these shortfalls,
we present an online OED that is able to employ an online adjustment in
the feedback control-loop in order to optimise model discrimination. We
furthermore develop a bank of filters with already existing parameter
sets 𝜽(𝑆𝑖) that represent characteristic animals or patients from the
population. To our knowledge, this is the first OED approach for model
discrimination with respect to glucose metabolism models.

This article is organised as follows. After briefly introducing the
reduced-order model in Section 2, the design of the continuous–discrete
unscented Kalman filters (CDUKF) and the approach to online OED
design for model discrimination is presented in Section 3. Section 4
introduces the experimental studies from which the parameter sets are
obtained. The OED model discrimination method is implemented in an
in-silico study in Section 5. Finally, Section 6 concludes with a summary
of the results and a discussion.

2. Reduced-order glucose metabolism model

The basis for the CDUKF bank is a fully observable reduced-order
version of the Göttingen Minipig model (Lunze, et al., 2014) that
was presented by Misgeld, Tenbrock, Lunze, Dietrich, and Leonhardt
(2016a). In the following, for convenience, the reduced-order model
is presented in a compact form. An overview of the reduced-order
model is shown in Fig. 1 and consists of three main subsystems. These
subsystems are the interstitium, the gastro-intestinal tract and the blood
circulation. Interstitium and gastro-intestinal tract model account for
the delay dynamics of subcutaneously applied insulin and orally uptaken
carbohydrates (CHO), respectively. The blood circulation is described by
a reduced-order dynamics and consists of insulin, glucose and glucagon
compartments. Interstitial and gastro-intestinal models are connected
to the blood circulation model via the subcutaneous insulin appearance
rate 𝑟𝐼𝑆𝐶 (𝑡) and the intravenous glucose appearance rate 𝑟𝐺𝐺𝐴(𝑡), respec-
tively. Moreover, the model has a number of external inputs: 𝑈𝑠𝑐 (𝑡) is a

Fig. 1. Block diagram overview of the order-reduced glucose metabolism model showing
external inputs and outputs.

subcutaneous infusion rate and 𝑈𝑖𝑣(𝑡) is an intravenous insulin infusion
rate. The pancreatic glucagon infusion rate 𝑆Γ(𝑡) = 𝑟𝑁𝑃Γ𝑃 (𝑡)𝑟

𝐵
𝑃Γ𝑃 = 𝑟𝑃Γ𝑃 (𝑡)

is given by the pancreatic glucagon production 𝑟𝑁𝑃Γ𝑃 (𝑡), normalised to the
basal rate by 𝑟𝐵𝑃Γ𝑃 . Externally applied glucose rates are the orally applied
glucose rate 𝐷𝑜𝑟𝑎𝑙(𝑡) and intravenously applied glucose rate 𝐷𝑖𝑣(𝑡); the
model output is the plasma glucose 𝐺𝑃 (𝑡). Note that not all of the
external inputs are used in the proposed filter and model discrimination
procedure described below.

2.1. Interstitium model

To model delay-dynamics (absorption kinetics) of subcutaneously
administered insulin to appearance rate of insulin in the blood, a linear
second-order ordinary differential equation (ODE) model is adopted
from Wilinska, et al. (2005):

𝑑�̇�𝐼
𝑠𝑐,1(𝑡)

𝑑𝑡
= 1

𝑇𝑠𝑐,1

(

(1 − 𝑥𝑈 )𝑈𝑠𝑐 (𝑡) − �̇�𝐼
𝑠𝑐,1(𝑡)

)

𝑑�̇�𝐼
𝑠𝑐,2(𝑡)
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= 1
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(
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𝑠𝑐,2(𝑡)
)

𝑟𝐼𝑆𝐶 (𝑡) = �̇�𝐼
𝑠𝑐,2(𝑡).

(1)

In Eq. (1), the states �̇�𝐼
𝑠𝑐,1(𝑡) and �̇�𝐼

𝑠𝑐,2(𝑡) denote nonmonomeric (inac-
tive) insulin and monomeric (active) insulin, respectively. Moreover, 𝑥𝑈
is a fractional parameter used to describe the partially activated insulin.
Time constants are denoted as 𝑇𝑠𝑐,1 and 𝑇𝑠𝑐,2.

2.2. Gastro-intestinal tract model

Time-delay of orally uptaken glucose is described by two coupled
first-order ODEs
𝑑�̇�𝐺
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𝑑𝑡
= 1
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𝑖𝑛𝑔,1(𝑡) − �̇�𝐺
𝑖𝑛𝑔,2(𝑡))

𝑟𝐺𝐺𝐴(𝑡) = 𝑓𝐺 �̇�𝐺
𝑖𝑛𝑔,2(𝑡),

(2)

adopted from Hovorka, et al. (2004). The states �̇�𝐺
𝑖𝑛𝑔,1(𝑡) and �̇�𝐺

𝑖𝑛𝑔,2(𝑡)
in Eq. (2) represent solid phase glucose mass flow in the stomach and
liquid phase mass flow in the intestine, respectively. Moreover, 𝑓𝐺 is
the bioavailability of glucose, that is employed to calculate the glucose
appearance rate in the blood 𝑟𝐺𝐺𝐴(𝑡). 𝑇𝑖𝑛𝑔,1 and 𝑇𝑖𝑛𝑔,2 denote time-
constants.
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