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a b s t r a c t

Accurate predictions of glucose concentrations are necessary to develop an artificial pancreas (AP) system for
people with type 1 diabetes (T1D). In this work, a novel glucose forecasting paradigm based on a model fusion
strategy is developed to accurately characterize the variability and transient dynamics of glycemic measurements.
To this end, four different adaptive filters and a fusion mechanism are proposed for use in the online prediction
of future glucose trajectories. The filter fusion mechanism is developed based on various prediction performance
indexes to guide the overall output of the forecasting paradigm. The efficiency of the proposed model fusion based
forecasting method is evaluated using simulated and clinical datasets, and the results demonstrate the capability
and prediction accuracy of the data-based fusion filters, especially in the case of limited data availability. The
model fusion framework may be used in the development of an AP system for glucose regulation in patients with
T1D.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Type 1 diabetes (T1D) is a chronic disease that is characterized by the
inability of the pancreas to produce insulin required for the regulation
of blood glucose concentration (BGC). People with T1D must administer
exogenous insulin to maintain their BGC within the desired range (70–
180 mg/dL). If BGC is not tightly regulated, the glycemic excursions may
cause hypoglycemia (low BGC) or hyperglycemia (high BGC), which
may lead to a variety of hazardous, long-term complications (Centers
for Disease Control and Prevention, 2011).

To mitigate hypo- and hyperglycemic excursions, closed-loop AP
systems that incorporate continuous glucose sensors, insulin pumps, and
appropriate control algorithms have been developed to automatically
calculate and administer the required insulin dosage. A hybrid AP
has been announced with availability in 2017 (Garg, Weinzimer,
Tamborlane, Buckingham, Bode, Bailey, et al., 2017). However, the con-
ventional AP systems typically involve proportional–integral- derivative

* Corresponding author at: Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
E-mail address: cinar@iit.edu (A. Cinar).

control techniques that ordinarily rely on the current glucose measure-
ments and a rudimentary model of the glucose–insulin dynamics (Per-
cival, Zisser, Jovanovic, & Doyle III, 2008). The recent development of
accurate continuous glucose monitoring (CGM) systems have increased
interest in the predictive modeling of glucose concentrations, which is
useful in hypo- and hyperglycemic early warning alarms (Chico, Vidal-
Ríos, Subirà, & Novials, 2003) and model-based predictive control in
advanced AP systems (Bequette, 2012; Cobelli, Dalla Man, Sparacino,
Magni, De Nicolao, & Kovatchev, 2009; Cobelli, Renard, Kovatchev,
Keith-Hynes, Ben Brahim, Place, et al., 2012; Dassau, Zisser, Percival,
Grosman, Jovanovic, & Doyle III, 2010; Ellingsen, Dassau, Zisser, Gros-
man, Percival, Jovanovič, et al., 2009; Eren-Oruklu, Cinar, Rollins, &
Quinn, 2012; Haidar, Legault, Dallaire, Alkhateeb, Coriati, Messier, et
al., 2013; Haidar, Messier, Legault, Ladouceur, & Rabasa-Lhoret, 2017;
Hovorka, Canonico, Chassin, Haueter, Massi-Benedetti, Federici, et al.,
2004; Jacobs, El Youssef, Castle, Bakhtiani, Branigan, Breen, et al., 2014;
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Kirchsteiger, Jørgensen, Renard, & Del Re, 2015; Kovatchev, Breton,
Dalla Man, & Cobelli, 2009; Kovatchev, Tamborlane, Cefalu, & Cobelli,
2016; Pappada, Cameron, Rosman, Bourey, Papadimos, Olorunto, &
Borst, 2011; Turksoy, Monforti, Park, Griffith, Quinn, & Cinar, 2017;
Wang, Zhang, Zeng, Wang, Chen, Zhang, et al., 2017). Nevertheless,
accurately predicting the future glucose trajectories is a challenging
problem as BGC is influenced by several factors including meals, admin-
istered insulin, exercise (Breton, Brown, Karvetski, Kollar, Topchyan,
Anderson, et al., 2014; DeBoer, Cherñavvsky, Topchyan, Kovatchev,
Francis, & Breton, 2016; Diabetes Research in Children Network Study
Group, 2005; Jacobs, El Youssef, Reddy, Resalat, Branigan, Condon,
et al., 2016; Pasieka, Riddell, Turner, Luzio, Gray, Bain, et al., 2017;
Peyser, Dassau, Breton, & Skyler, 2014; Turksoy, Kilkus, Hajizadeh,
Samadi, Feng, Sevil, et al., 2016a; Turksoy et al., 2017; Turksoy, Samadi,
Feng, Littlejohn, Quinn, & Cinar, 2016b) and emotional state (related to
the concentration of certain hormones) (Nomura, Fujimoto, Higashino,
Denzumi, Miyagawa, Miyajima, et al., 2000). Moreover, different phys-
iological phenomena and the diverse lifestyles of individuals result
in significant variability in glucose dynamics over time and among
patients (Brazeau, Rabasa-Lhoret, Strychar, & Mircescu, 2008). These
causes of glucose variability pose substantial challenges for the accurate
prediction of future glucose trajectories.

To address this problem, previous research studies (Eren-Oruklu
et al., 2012; Gani, Gribok, Lu, Ward, Vigersky, & Reifman, 2010;
Kirchsteiger et al., 2015; Nixon & Pickup, 2011; Pappada et al., 2011;
Parker, Doyle, & Peppas, 1999; Pérez-Gandía, Facchinetti, Sparacino,
Cobelli, Gómez, Rigla, et al., 2010; Reifman, Rajaraman, Gribok, &
Ward, 2007; Turksoy, Quinn, Littlejohn, & Cinar, 2014; Zhao, Dassau,
Harvey, Seborg, & Doyle, 2011; Zhao, Dassau, Zisser, Jovanovič, Doyle,
& Seborg, 2014; Zhao & Yu, 2015) have utilized various types of models
for BGC prediction (or even development of AP systems) that can
generally be divided into two main categories: physiological models and
data-driven empirical models. Physiological models describe the glucose
dynamics based on the fundamental understanding of the biological
and chemical phenomena. Despite the abundant use of physiological
models (Bergman, 1989; Hovorka et al., 2004; Lehmann & Deutsch,
1992; Parker et al., 1999; Parker, Doyle, Ward, & Peppas, 2000), it may
be difficult to develop a model that is personalized to individual patients
because the model parameters may not be readily estimated from the
limited measurements available (Dalla Man, Micheletto, Sathananthan,
Vella, & Cobelli, 2016; Messori, Toffanin, Del Favero, De Nicolao,
Cobelli, & Magni, 2016; Piccinini, Dalla Man, Vella, & Cobelli, 2016;
Toffanin, Visentin, Messori, Di Palma, Magni, & Cobelli, 2017; Visentin,
Dalla Man, & Cobelli, 2016). Daily adaptation of physiological model
was proposed recently (Dalla Man et al., 2016; Messori et al., 2016;
Piccinini et al., 2016; Toffanin et al., 2017; Visentin et al., 2016).
Alternatively, data-driven models offer a simpler structure that is suffi-
cient for online prediction yet computationally tractable for online and
adaptive estimation, thus able to capture the time-varying relationships
among the system variables (Araghinejad, 2013; Cherkassky & Mulier,
2007; Cinar, Turksoy, & Hajizadeh, 2016; Turksoy et al., 2016a, 2017,
2014, 2016b; Wang, Wu, & Mo, 2013). Once such relationships are
identified, they can be used to train models that complement or replace
physiological models.

In general, empirical models predict the future glucose values based
on a combination of either the predicted or measured current and
historical glucose signals. Such types of models can be divided into
linear and nonlinear models. For linear models, AR (autoregressive) or
ARX (autoregressive with exogenous inputs) modeling methods were
developed by using the current and previous BG values or adding
exogenous inputs. Since these models usually consider the output
predictions to be a linear combination of the model inputs, the model
parameters can be readily updated online. The advantages of using
linear methods are simplicity, computational tractability, and rapid
convergence of the model parameters without the onerous demands of
requiring abundant training data. The disadvantage is that, for more

reliable prediction results, the ARX models need information that cannot
be captured or computed autonomously in real time applications (such
as carbohydrate content of meals, concentration of some hormones,
etc.). For nonlinear modeling approaches, a large training dataset is
typically required to characterize the nonlinear temporal dynamics of
blood glucose metabolism, while the learning algorithms may be more
time-consuming and computationally expensive. However, a personal-
ized nonlinear dynamic model may result in more accurate predictions,
provided the training data are sufficient to identify the nonlinear
relationships.

A recent trend is to construct a hybrid data-driven model (Azmi,
Araghinejad, & Kholghi, 2010) through the combination of various
model types (linear/nonlinear or AR/ARX) obtained from different
modeling algorithms (See & Abrahart, 2001). Nevertheless, an inherent
challenge of designing the BGC predictor through hybrid models is to
ensure that different data-driven models are appropriately combined
and coordinated with a suitable decision-making mechanism. Along this
direction, recent work (Stahl, Johansson, Renard, & IEEE, 2012) used a
probabilistic framework approach to combine three parallel predictors
using a soft switcher derived from the Bayesian model averaging
technique to find the best individual predictor.

Motivated by the above considerations, an online data-driven pre-
diction strategy is proposed in this work that employs filtering fusion
and a decision-making mechanism for accurate glucose concentration
predictions in people with T1D. Considering the complexities of glucose
dynamics, it is not practical to develop a universal/global prediction
model for all subjects. A more suitable approach is to train a personal-
ized model using present and historical data from CGM sensors. Since
the characteristics of various kinds of adaptive filters may be better
suited to different dynamic processes, training sizes, time-variant and
noise environments, the filter fusion methodology is utilized and the
parameters of each filter are appropriately designed so that the overall
combinational filter can be used in various situations for online glucose
prediction. The linear adaptive filters (recursive least squares [RLS]
and extended recursive least squares [EX-RLS]) generally require less
data for updating the model parameters than the nonlinear kernel-
based filters (kernel recursive least squares [KRLS] and extended kernel
recursive least squares [EX-KRLS]) (Liu, Principe, & Haykin, 2011).
However, kernel-based filters usually have better prediction results than
the linear filters if the data are inherently nonlinear. Furthermore,
a decision-making mechanism for filter fusion is proposed based on
different prediction performance indices to guide the overall output
of the filter to have better prediction accuracy than the individual
filters. The accuracy of the proposed predictor is demonstrated by
predicting the glucose measurements of in silico and clinical subjects.
The performance of fusion filtering method is also compared with each
of the adaptive filtering models for short-term (5–30 min) online glucose
prediction. The rest of this paper is organized as follows. Section 2
outlines the four adaptive filtering algorithms and analyzes their char-
acteristics. Then, a detailed description of the model selection and
filtering fusion mechanism for online glucose prediction is developed.
Section 3 contains the description of the computational experiments
and the accompanying results. Section 4 presents the highlights of the
experiments as well as a discussion of the findings. Section 5 concludes
the paper.

2. Methodology

2.1. Hybrid models with different adaptive filtering algorithms

To improve the accuracy of online prediction, adaptive filters (Good-
win & Sin, 2014), various candidate models with unique and distin-
guished characteristics are applied to obtain candidate data-driven mod-
els. Based on the complex features of the glucose dynamics, recursive
least squares (RLS) (Haykin, 2008), extended recursive least squares
(EX-RLS) (Sayed, 2003), kernel recursive least squares (KRLS) (Engel,

130



Download English Version:

https://daneshyari.com/en/article/7110517

Download Persian Version:

https://daneshyari.com/article/7110517

Daneshyari.com

https://daneshyari.com/en/article/7110517
https://daneshyari.com/article/7110517
https://daneshyari.com

