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a b s t r a c t

A crucial step in the control of a weakly damped high precision motion system is having an accurate dynamic
model of the system from actuators to sensors and to the unmeasured performance variables. A (reduced) Finite
Element (FE) model may be a good candidate apart from the fact that it often does not sufficiently match with
the real system especially when it comes to machine-to-machine variation. To improve the dynamic properties of
the FE model toward the dynamic properties of a specific machine, an Iterative Pole–Zero (IPZ) model updating
procedure is used that updates numerical poles and zeros of Frequency Response Functions (FRFs) toward
measured poles and zeros, which can be extracted from the measured FRFs. It is assumed that in a practical
situation, the model (physical) parameters that cause discrepancy with the real structure are unknown. Therefore,
the updating parameters will be the eigenvalues of the stiffness and/or damping (sub)matrix. In this paper, an
IPZ model updating is introduced which combines the sensitivity functions of both poles and zeros (with respect
to the corresponding updating parameters) together with the cross sensitivity functions between poles and zeros.
The procedure is verified first using simulated experiments of a pinned-sliding beam structure and then using
non-collocated FRF measurement results from a cantilever beam setup.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

High-precision motion stages are an important part of high-tech
systems such as wafer scanners and microscopes (Devasia, Eleftheriou,
& Moheimani, 2007; van de Wal, van Baars, Sperling, & Bosgra, 2002;
Wassink, van de Wal, Scherer, & Bosgra, 2005). Motion stages are
basically made of lightly damped flexible structures resulting in flexible
dynamic behavior of the system. For accurate positioning of stages,
knowledge of an accurate yet low-order parametric model of the system
from actuators to the sensors and to the unmeasured performance vari-
ables at the Point-Of-Interest (POI) is unavoidable. In many situations,
identification techniques are used for calculation of the parametric
model from actuators to the sensors. However, in other situations where
the performance variable is located in a different location than the
sensor location, identification techniques cannot be used. In these sit-
uations, reduced-order FE models may be used to accurately predict the
performance variables. However, FE models normally do not sufficiently
match with the real structure due to simplification in FE modeling or due
to manufacturing tolerances.

To improve the accuracy of a FE model in terms of matching the
dynamic behavior with the real structure, model updating techniques
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are well-known tools. In principle there are two types of model updating
techniques: direct methods and iterative methods. In Arora (2011), it
is shown that iterative methods generally give better matching of FRFs
with experimental data and that predictions based on iterative methods
are better than those based on direct methods beyond the considered
frequency range. Within the iterative methods, there are two categories
of model updating techniques. The first category contains modal-based
techniques and is concerned with updating modal properties such as
eigenfrequencies, antiresonance frequencies, and mode shapes in an
attempt to reduce the residuals between numerical and measured modal
quantities, e.g. see Dorosti, Fey, Heertjes, van de Wal, and Nijmeijer
(2014), Jaishi and Ren (2007), Mottershead, Link, and Friswell (2011).
The second category contains FRF-based techniques and attempts at
reducing the residuals between numerical and measured FRFs directly,
see e.g. Abrahamsson, Bartholdsson, Hallqvist, Olsson, Olsson, and
Sallstrom (2014), Arora, Adhikari, and Friswell (2015), Dorosti, Heck,
Fey, Heertjes, van de Wal, and Nijmeijer (2011). In Jaishi and Ren
(2005), a comparative study is given on the model updating approaches
using either modal or FRF residuals.

One of the key issues in model updating is how to select appropriate
design parameters. In some situations, it is clear which (physical)
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model parameter values are uncertain. In other situations, e.g. for
geometrically complex structures with many mechanical connections,
it may be far from trivial to identify which physical parameters are
causing differences between the numerical and the experimental target
quantities. Even if the uncertain physical parameter is known, derivation
of the sensitivity of the model to that parameter may be computationally
highly demanding. Moreover, the relation between the model and the
physical parameters is often lost as soon as model reduction is applied. In
those situations, generic parameters may be better candidates for model
updating. Generic element parameterization is for example based on
allowing changes to the eigenvalues and eigenvectors of the stiffness
matrices of the structural elements or substructures (Titurus, Friswell,
& Starek, 2003). Performance of FE model updating techniques under
selection of different classes of parameters is compared in Ahmadian,
Gladwell, and Ismail (1997). It is important to mention that having an
(over)determined model updating problem is often desirable, i.e. having
fewer or the same number of design parameters compared to the number
of measured quantities (Mottershead et al., 2011). This is because
having more design parameters than residuals increases the chance of
creating an ill-conditioned problem and may also lead to physically
unacceptable parameter updates.

Most of the modal-based model updating techniques are concerned
with updating the eigenfrequencies, see e.g. Jaishi and Ren (2007),
Mottershead et al. (2011). Recently, some effort has been dedicated to
include the effect of antiresonances in the model updating, see Arora
(2014), D’Ambrogio and Fregolent (2003), Hanson, Waters, Thompson,
Randall, and Ford (2007), Jones and Turcotte (2002), Mottershead
(1998). However, all of these model updating techniques are based
on updating physical design parameters. Contrary, in IPZ model up-
dating, the eigenvalues of the stiffness and/or damping matrix of the
(sub)structure are introduced as the generic parameters. This is done
because errors in stiffness and/or damping modeling are more likely
to occur than errors in mass modeling. The choice for these generic
parameters comes with the advantages that the number of design
parameters will be limited, and that the exact location of the model
error does not need to be known.

IPZ model updating in general tries to reduce the pole and zero resid-
uals between numerical and measured values, which are obtained from a
few FRF measurements from the existing actuator/sensor configuration.
In this paper, an IPZ model updating technique is introduced which
uses a standard gradient-based technique to update generic parameters
such that the poles and zeros of a reduced numerical model iteratively
converge to their experimentally estimated counterparts. To do so,
equations are derived to calculate increments for the pole and zero
generic parameters simultaneously. This is done by using combined
sensitivities. Not only the pole sensitivities w.r.t. the pole generic
parameters and the zero sensitivities w.r.t. the zero generic parameters
are used, but also the cross sensitivities between the poles and the zero
generic parameters (and vice versa) are incorporated. Subsequently,
first the stiffness (or damping) structure matrix and subsequently the
substructure (or damping) stiffness matrices are updated sequentially.

In a nutshell, contributions of IPZ model updating can be summa-
rized in the following areas. First, updating of complex-valued poles
and zeros is done instead of (mostly used in the literature) real-valued
resonance and antiresonance frequencies. In other words, the damping
matrix is updated as well as the stiffness matrix. The majority of the
existing updating procedures are dedicated to undamped structures.
Second, model updating is carried out using generic parameters instead
of physical parameters which is suited for geometrically complex struc-
tures where the erroneous physical parameters are hardly known. Third,
model updating is performed on the reduced-order model.

The remainder of the paper is organized as follows. Section 2
is dedicated to a short recap on model reduction including residual
flexibility, which will be used in IPZ model updating. In Section 3,
the theoretical framework of IPZ model updating using combined
sensitivities is discussed. Simulation is a powerful tool for verification of

techniques, since we have access to the expected results. Therefore, in
Section 4, a pinned-sliding beam structure is introduced as a case study
to verify the IPZ model updating technique with combined sensitivities.
The IPZ model updating technique with combined sensitivities is exper-
imentally validated through non-collocated FRF measurement results
from a cantilever beam setup in Section 5. Finally, some conclusions
are drawn in Section 6.

2. Model reduction

Updating a FE model of a complex system with many Degrees-Of-
Freedom (DOFs), typically in the order of 106, is generally computa-
tionally expensive. Moreover, from a system and control point of view
we are often interested in a specific frequency range which may include
rigid body modes as well as a limited number of flexible modes that
have relevant contributions to the input–output behavior of the system.
Therefore, the original FE model will be reduced. It is assumed that the
linear dynamic behavior of a mechanical structure can be described by

𝐌𝑛�̈�𝑛 + 𝐁𝑛�̇�𝑛 +𝐊𝑛𝐪𝑛 = 𝐟𝑛, (1)

with 𝐪𝑛 ∈ R𝑛×1 the vector with 𝑛 DOFs, 𝐟𝑛 ∈ R𝑛×1 the external load
vector, 𝐌𝑛 = 𝐌𝑇

𝑛 ≻ 0 the positive-definite mass matrix, 𝐁𝑛 = 𝐁𝑇
𝑛 ⪰ 0 the

positive semi-definite damping matrix, 𝐊𝑛 = 𝐊𝑇
𝑛 ⪰ 0 the positive semi-

definite stiffness matrix, and 𝐌𝑛,𝐁𝑛, 𝐊𝑛 ∈ R𝑛×𝑛. Using a model reduction
technique based on eigenmodes and residual flexibility modes, the
following reduced-order dynamic equation is derived

𝐌𝑟�̈�𝑟 + 𝐁𝑟�̇�𝑟 +𝐊𝑟𝐪𝐫 = 𝐟𝑟, (2)

with the reduced order mass matrix 𝐌𝑟 = 𝐌𝑇
𝑟 = 𝚽−1

𝑠
𝑇𝚽𝑇

𝑟 𝐌𝑛𝚽𝑟𝚽−1
𝑠 ≻ 0,

damping matrix 𝐁𝑟 = 𝐁𝑇
𝑟 = 𝚽−1

𝑠
𝑇𝚽𝑇

𝑟 𝐁𝑛𝚽𝑟𝚽−1
𝑠 ⪰ 0, and stiffness

matrix 𝐊𝑟 = 𝐊𝑇
𝑟 = 𝚽−1

𝑠
𝑇𝚽𝑇

𝑟 𝐊𝑛𝚽𝑟𝚽−1
𝑠 ⪰ 0, 𝐌𝑟,𝐁𝑟,𝐊𝑟 ∈ R𝑟×𝑟, and

𝐟𝑟 = 𝚽−1
𝑠

𝑇𝚽𝑇
𝑟 𝐟𝑛 ∈ R𝑟×1 the reduced external load column. 𝚽𝑟 ∈ R𝑛×𝑟

is a subset of the mode shape matrix, which column-wise consists of (a)
rigid-body modes (if present), (b) a selected number of low-frequency
modes, and (c) residual flexibility modes defined for externally loaded
DOFs. Row-wise 𝚽𝑟 consists of all DOFs. The square matrix 𝚽𝑠 ∈ R𝑟×𝑟

is a subset of 𝚽𝑟, which column-wise consists of the same modes as
in 𝚽𝑟, but row-wise consists of only desired physical DOFs including
actuator, sensor, and unmeasured performance variable DOFs. This has
been explained in more detail in Dorosti et al. (2014).

3. Iterative pole–zero model updating using combined sensitivities

Imagine that in a motion system, an accurate prediction of a per-
formance variable (for a location different than the sensor location) is
needed. Assume that an FRF measurement from an actuator to a sensor
is available. Also assume that the FE model of the system is available but
the generated numerical FRF between the actuator and the sensor shows
discrepancy with the measured FRF. A solution to this problem is to first
reduce the FE model of the system, and then update the reduced model
using poles and zeros derived from the measured FRF. Subsequently,
the updated reduced FE model can be used for accurate prediction of
the performance variable.

Using the reduced-order dynamic equation in (2), the FRF corre-
sponding to a sensor at DOF 𝑖 and an actuator at DOF 𝑗 can be described
as

𝐆𝑖𝑗 (𝜔) =
det(−𝜔2𝐌𝑠 + 𝑗𝜔𝐁𝑠 +𝐊𝑠)
det(−𝜔2𝐌𝑟 + 𝑗𝜔𝐁𝑟 +𝐊𝑟)

, (3)

where 𝐌𝑠,𝐁𝑠,𝐊𝑠 are the so-called substructure matrices which are
constructed from the reduced-order matrices 𝐌𝑟,𝐁𝑟,𝐊𝑟 respectively,
by eliminating the 𝑖th column and the 𝑗th row corresponding to the
sensor and actuator DOFs (Mottershead, 1998). Note that if 𝑖 ≠ 𝑗,
the substructure matrices will generally be non-symmetric. Now assume
that 𝑚𝑝 experimental poles (𝝀𝑝,𝑒 ∈ C𝑚𝑝×1) and 𝑚𝑧 experimental zeros
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