
Accepted Manuscript

Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups

Akarsh Verma, Avinash Parashar

PII: S0925-9635(18)30256-5

DOI: doi:10.1016/j.diamond.2018.07.014

Reference: DIAMAT 7163

To appear in: Diamond & Related Materials

Received date: 11 April 2018 Revised date: 11 June 2018 Accepted date: 18 July 2018

Please cite this article as: Akarsh Verma, Avinash Parashar, Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diamat (2018), doi:10.1016/j.diamond.2018.07.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups

Akarsh Verma and Avinash Parashar*

Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India *Email: drap1fme@iitr.ac.in; Ph: +91-1332284801

Abstract

The aim of this article was to study the effect of oxide functionalisation on the fracture

toughness of bicrystalline graphene. Molecular dynamics based simulations in conjunction

with reactive force field were performed to study the fracture toughness of functionalised

bicrystal of graphene. Separate studies were performed with hydroxyl and epoxide

functionalisation, and later on the same simulations were extended over graphene oxide (GO)

as a whole. Failure morphologies depict that epoxide groups tend to boost the fracture

toughness, via altering the failure path and transforming the fracture mode from mode-I to

mode-II. In addition to the transformation, epoxide-to-ether conversion also played

significant role in enhancing the fracture toughness of bicrystalline graphene. On the other

hand, steric hindrance exhibited by the hydroxyl group mitigates the fracture toughness of

GO. Overall, certain spatial sandwich configurations of epoxide groups concluded an

enhanced fracture toughness for bicrystalline graphene; which further opens new avenues for

the application of these graphene sheets in nanodevices, nanomembranes and

nanocomposites.

Keywords: Bicrystalline graphene, Grain boundaries, Oxygen functionalisation, Fracture

toughness, Molecular dynamics

1

Download English Version:

https://daneshyari.com/en/article/7110712

Download Persian Version:

https://daneshyari.com/article/7110712

<u>Daneshyari.com</u>