

Contents lists available at ScienceDirect

## **Diamond & Related Materials**



journal homepage: www.elsevier.com/locate/diamond

# The effect of phosphate modification on the photocatalytic $H_2O_2$ production ability of g-C<sub>3</sub>N<sub>4</sub> catalyst prepared via acid-hydrothermal post-treatment



### Jin Bai\*, Yongzhen Sun, Meiyuan Li, Lina Yang, Jian Li

College of Chemistry, Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China

ABSTRACT

#### ARTICLE INFO

\_\_\_\_\_

Keywords: Graphitic carbon nitride Acid-hydrothermal method H<sub>2</sub>O<sub>2</sub> production Phosphate modification Photocatalysis Protonation of graphitic carbon nitride (g- $C_3N_4$ ) based catalyst by acid treatment is proved to benefit for its photocatalytic performance. However, acid-hydrothermal method to synthesize g- $C_3N_4$  was seldom reported. In this work, phosphate-modified g- $C_3N_4$  as efficient photocatalyst for  $H_2O_2$  production was prepared via acid-hydrothermal method. XRD,  $N_2$  adsorption, UV–Vis, FT-IR, SEM, XPS, TPD, EIS, and PL were used to characterize the obtained catalysts. Phosphate modification not only influences the morphology, structure property and optical property, but also promotes the  $O_2$  adsorption ability, leading to the improved separation rate of electrons-holes. Phosphate modified g- $C_3N_4$  catalyst shows the  $H_2O_2$  concentration of 5.4 mmol L<sup>-1</sup>, more than 13.5 times higher than that of neat g- $C_3N_4$ . The possible reaction mechanism is proposed.

#### 1. Introduction

Environmental pollution and energy crises are two major problems facing humanity. Under this background, heterogeneous photocatalysis has attracted the attention of many scholars in the fields of chemistry, physics, materials science, and environmental protection [1]. An increasing number of semiconductor materials have been found to be suitable for photocatalytic reactions [2-26]. Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), as a metal-free photocatalyst found by Wang et al., has excellent photocatalytic performance in visible light region [27]. Due to the advantages of a suitable band gap, high chemical stability, and unique electronic structure, g-C<sub>3</sub>N<sub>4</sub> has shown excellent application prospects in photocatalytic hydrogen production, organic pollutant degradation, organic synthesis, nitrogen fixation, and hydrogen peroxide production [28-33]. However, g-C<sub>3</sub>N<sub>4</sub> also suffers from many disadvantages, such as the low visible-light utilization efficiency, high recombination rate, and small BET surface area, which limit its practical application. To advance this promising photocatalyst, many strategies have been applied, such as metal or non-metal doping [34-36], copolymerization [37], semiconductor coupling [38], and nanostructured design [39].

In 2011, Zhou et al. prepared  $\text{TiO}_2$  by acid-hydrothermal method [40]. They found that, by controlling the concentration of acid solution, the morphology of as-prepared  $\text{TiO}_2$  can be tuned, thus influenced its optical property. In 2013, Zhao et al. prepared  $\text{TiO}_2$  catalyst by acid hydrothermal method, and also found that the morphology of the  $\text{TiO}_2$  is related to the acid concentration [41]. HCl treated  $\text{TiO}_2$  showed the

\* Corresponding author. *E-mail address:* baijin820612@163.com (J. Bai).

https://doi.org/10.1016/j.diamond.2018.05.004

0925-9635/ © 2018 Elsevier B.V. All rights reserved.

highest salicylic acid and phenol photocatalytic degradation efficiency. In recent years, acid treatment has also been applied to prepare  $g-C_3N_4$  based catalysts. Tong et al. prepared  $g-C_3N_4$  nanosheets by directly adding certain amount of water dropwise into the mixture of bulk  $g-C_3N_4$  and concentrated  $H_2SO_4$  under ambient condition [42]. Compared with bulk  $g-C_3N_4$ , the as-prepared  $g-C_3N_4$  nanosheets show great superiority in photogenerated charge separation and transfer, and consequently exhibit significantly enhanced activity in photocatalytic  $H_2$  evolution from water under visible-light irradiation. Tang et al. fabricated several kinds of inorganic acids ( $H_2SO_4$ , HNO\_3, and HCl) modified carbon nitrides [43]. They found the morphology, porous structure, surface area, and C/N ratio of the catalyst are influenced by inorganic acid treatment.  $H_2SO_4$  treated carbon nitride showed the highest  $H_2$  production ability. However, preparation of  $g-C_3N_4$  by acid-hydrothermal method is seldom reported till now.

Because of the high content of active oxygen (47% w/w) and only  $H_2O$  as a by-product,  $H_2O_2$ , as a green oxidant, has important applications in many fields such as organic synthesis, water treatment, and catalysis [44,45]. Industrially,  $H_2O_2$  is produced by the anthraquinone method, in which energy consumption is high because of the multistep hydrogenation and oxidation reactions. Thus this method is unsuitable for the current new concept of "green, energy saving and environmentally friendly" in the chemical industry. Recently, the direct synthesis of  $H_2O_2$  from  $H_2$  and  $O_2$  gases has been widely studied using noble metals as catalysts [46,47]. It is considered to be an alternative and green chemistry process. However, this method presents a potential explosion risk from  $H_2/O_2$  mixtures. Recently, photocatalytic hydrogen

Received 28 March 2018; Received in revised form 2 May 2018; Accepted 8 May 2018 Available online 10 May 2018



Fig. 1. XRD patterns (a), UV–Vis spectra (b), plots of the transformed Kubelka-Munk function versus the energy of light (c) and N<sub>2</sub> adsorption-desorption isotherms (d) of as-prepared catalysts.

peroxide production technology has attracted a great deal of attention from researchers [48,49]. Hydrogen peroxide is produced by twoelectron reduction of oxygen atom. Hydrogen ions come from water. The reaction is shown as follows:  $O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$ . In this work, phosphate-modified g-C<sub>3</sub>N<sub>4</sub> with outstanding photocatalytic H<sub>2</sub>O<sub>2</sub> production ability is prepared by acid-hydrothermal post-treatment. The influences of acid-hydrothermal treatment on the structural property, optical property, and photocatalytic activity of as-prepared catalyst are investigated in detail.

#### 2. Experimental

#### 2.1. Preparation and characterization

Neat  $g-C_3N_4$  was prepared by annealing melamine at 520 °C for 2 h (at a rate of 5 °C min<sup>-1</sup>), and denoted as GCN. 2 g of as-prepared GCN was dispersed into 70 mL of deionized water. 10, 20, and 30 mL of  $H_3PO_4$  was added into above suspension under stirring, respectively. The suspension was transferred into a 100 mL Teflon-lined autoclave and maintained at 160 °C for 20 h. The solid was collected by centrifugation, washed with deionized water, and dried at 80 °C. The obtained catalyst was denoted as POCN(1), POCN(2), and POCN(3), respectively.

XRD patterns of as-prepared catalysts were recorded on a Rigaku D/ max-2400 instrument using Cu-K $\alpha$  radiation ( $\lambda = 1.54$  Å). The scan rate, step size, voltage, and current was 0.05 °/min, 0.01 °, 40 kV, and 30 mA, respectively. Nitrogen adsorption was measured at -196 °C on a Micromeritics 2010 analyzer. The BET surface area (S<sub>BET</sub>) was calculated based on the adsorption isotherm. Fourier transform infrared spectra (FT-IR) were obtained on a FT-IR spectrometer (Agilent FTIR-660). UV–vis spectroscopy measurement was carried out on a Agilent Cary 5000 UV–vis spectrophotometer. The morphology of prepared catalyst was observed by using a scanning electron microscope (SEM, SU8010, HITACHI). Temperature programmed desorption (TPD) were performed using a CHEMBET-3000 (Quantachrome, U.S.A.) instrument. Photoluminescence (PL) spectra were measured by FP-6300 fluorospectrophotometer. Xe lamp was used as excitation source. XPS measurements were conducted on a Thermo Escalab 250 XPS system with Al Ka radiation as the exciting source. The electrochemical impedance spectra (EIS) were recorded using an EIS spectrometer (EC-Lab SP-150, BioLogic Science Instruments) in a three electrode cell by applying a 10 mV alternative signal versus the reference electrode (SCE) over a frequency range of 1 MHz to 100 mHz. The cyclic voltammograms were measured in a 0.1 M KCl solution containing 2.5 mM K<sub>3</sub>[Fe (CN)<sub>6</sub>]/K<sub>4</sub>[Fe(CN)<sub>6</sub>] (1:1) as a redox probe at a scanning rate of  $20 \text{ mV s}^{-1}$  in the same three electrode cell as the EIS measurement. The photocurrents were measured using an electrochemical analyzer (CHI 618C Instruments) equipped with a rectangular-shaped quartz reactor  $(20 \times 40 \times 50 \text{ mm})$  using a standard three-electrode system. The prepared sample film was used as the working electrode, a Pt flake was used as the counter electrode, and Ag/AgCl was used as the reference electrode. A 500 W Xe lamp was used to irradiate the working electrode from the back side. The light intensity on the working electrode was  $120 \,\mathrm{mW}\,\mathrm{cm}^{-2}$ .

#### 2.2. Photocatalytic reaction

The photocatalytic  $H_2O_2$  production ability of as-prepared catalysts was investigated. 0.2 g of catalyst was added into 200 mL of deionized water under stirring to form a suspension. 0.15 g of EDTA was added as a hole scavenger. The experiments were performed in a double-walled quartz reactor. Then, the suspension was exposed to a 250 W highpressure sodium lamp with main emission from 400 to 800 nm. The UV light portion of the sodium lamp was filtered by NaNO<sub>2</sub> solution Download English Version:

# https://daneshyari.com/en/article/7110740

Download Persian Version:

https://daneshyari.com/article/7110740

Daneshyari.com